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Executive Summary 

The main goal of the applications work package, namely WP1, in the DEEP Extreme Scale 

Technologies (DEEP-EST) project is to assess the Modular Supercomputing Architecture 

(MSA) developed in the project and to evaluate the DEEP-EST prototype. For this purpose, 

six applications from a wide range of scientific fields are chosen. These will show that the 

new architecture is beneficial for not only one specific kind of application, but for several 

ones and in different ways. 

This second deliverable gathers a description of all the benchmarking necessary to track the 

increase in performance undergone by each application, in an effective way. Such 

performance gains will be a direct consequence of the applications’ adaptation to the MSA. 

For this purpose, increasingly complex benchmarks have been carefully chosen to cover 

realistic test cases whilst keeping into consideration certain constraints such as runtime 

execution. WP2 (“Benchmarking and modelling”) will carry out a continuous benchmarking as 

well as tracing of the applications throughout the duration of the project using the analysis 

tools introduced in early stages of the project. 

DEEP-EST Design and Development Group (DDG) is currently evaluating potential 

architectures for the DEEP-EST prototype, especially for the Extreme Scale Booster (ESB) 

module, such as the AMD EPYC Naples 2S and the ARM Cavium Thunder X2 systems. A 

simpler version of the benchmarks that are described in this document (namely micro-

benchmarks and not shown here for the sake of conciseness) is currently being deployed on 

such architectures to assess their appropriateness for the MSA. This highlights the 

importance of benchmarking for the achievement of the DEEP-EST co-design project. 
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1 Introduction 

The first deliverable D1.1 reported on each application structure and their requirements1, 

both in terms of hardware and software, for the co-design of the MSA to be built within the 

DEEP-EST project. This document aims at describing a series of benchmarks in order to 

track the progress, both in terms of performance and modularity, that each application will 

undergo throughout the lifespan of the project.  This document is structured as follows: each 

application, which can consist of several programs, is reported in a separated section and a 

final section is reserved for the global conclusion followed by next steps. 

Although each application case is presented in a slightly different manner due to different 

and particular requirements, a common structure is shared among all of them. When it is 

necessary, a detailed overview of the application is presented thus complementing the 

description given in the deliverable D1.11. This overview clarifies concepts and particularities 

that are later applied to the benchmarking phase. After this, benchmarking metrics are 

defined to help identifying the final result of the benchmark. Benchmarks are then described 

from both a physical and a computational point of view in order to give a general idea of what 

they do represent. Instructions on how to access the application source code, compile it and 

run it via JUBE scripts are also provided herein. Additional comments on variables and 

parameters required by applications and benchmarks can also be found although a strong 

emphasis has been placed on automating all the involved procedures. Finally, results from 

previous benchmarking on other hardware are often provided as reference data, which might 

be helpful for colleagues of WP2 (“Benchmarking and modelling”) who will carry out the 

benchmarking and compare data. 

  

                                                
1
 A. Kreuzer, P. Martínez, H. E. Plesser, P. Petkov, V. Pavlov, J. Romein, J. Amaya, D. Gonzalez, M. Riedel, M. 

Girone. “Application co-design input”, Deliverable D1.1, DEEP Extreme Scale Technologies (2017). 
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2 Task 1.2: Neuroscience (NMBU) 

The long-term goal of the neuroscience task in DEEP-EST is to provide an optimised setup 

for the integrated simulation and analysis of large-scale brain activity. Such in situ analysis is 

essential to facilitate the interactive investigations of brain dynamics, where scientists can 

observe network activity while a simulation is running and interact with the simulation to 

ensure that dynamics stay within relevant regimes. In DEEP-EST, we will focus on 

simulations of functional models of brain structure simulated using the NEST simulator 

combined with two types of in situ analysis: computation of electrical local field potentials 

using the Arbor and HybridLFPy packages on the one side, and statistical analysis of spike 

activity using the Elephant package on the other. NEST will be executed on the CM, 

Arbor/HybridLFPy on the ESB and Elephant on the DAM. NEST output will be communicated 

to the analysis packages using the MUSIC library. 

 
Figure 1: Neuroscience simulation and analytics workflow for NEST with in situ computation of local field 
potentials using Arbor and HybridLFPy (left path) and in situ statistical analysis using Elephant (right 
path). 

Key performance constraints in the neuroscience workflow will be the performance of the 

NEST, Arbor and Elephant applications (HybridLFPy provides only configuration and limited 

postprocessing steps). These applications should therefore be benchmarked and traced 

independently of each other. Since the applications individually scale well, one can later 

adjust the resources devoted to each particular application to achieve balanced performance 

among all parts. We will therefore discuss the applications separately in this document. For 

each application, we describe the application itself, followed by a description of which 

quantities to measure and a description of the benchmark cases. Technical details on the 

benchmark configurations using JUBE are provided in the DEEP-EST Gitlab repository for 

benchmarks2. 

2.1 Benchmarking NEST 

2.1.1 Application structure 

2.1.1.1 Overview 

NEST is a simulation code for the investigation of the dynamics of brain-scale neuronal 

network models. It does so at the level of resolution of neurons and synapses, where 

neurons are brain cells which are connected to each other by the synapses. 

                                                
2
 https://gitlab.version.fz-juelich.de/DEEP-EST/Benchmarks/blob/master/Applications/NEST/README.md  

https://gitlab.version.fz-juelich.de/DEEP-EST/Benchmarks/blob/master/Applications/NEST/README.md
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Figure 2: Major steps of build and simulation phase of NEST. The vertical black arrow on the left indicates 
single-threading and multi-threading (single and multiple lines, respectively), MPI communication 
(squares with bidirectional arrows), and the repetition of the main simulation cycle (dashed upward 
pointing arrow). Coloured and dark grey text highlighting corresponds to the data structures shown in 
Figures 2, 3, respectively; they indicate when the data structures are created, changed or accessed. From 
Kunkel and Schenck (2017) under CC BY license. 

NEST considers the brain tissue as an abstract assembly of nodes (neurons) and 

connections (synapses) or, in other words, a directed graph. The neurons in these 

simulations are point neurons, i.e. the state of a node changes according to a set of ordinary 

differential equations (ODE), without taking into account the complete morphology of the cell. 

The interaction between nodes is mediated by stereotyped events in the form of delayed 

delta pulses. These so-called action potentials (or spikes) are emitted by the nodes (neuronal 
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activity) and propagated along the connections. The interaction strength (synaptic weight) 

can either be static or dynamic (synaptic plasticity) and depends on the activity of the two 

neurons joined by the connection. In biology, each neuron provides input to ~104 other 

neurons and receives input from about as many. The largest NEST simulation to date 

simulated 1.86·109 neurons connected by 11.1·1012 synapses using the full K computer in 

Kobe, Japan3. 

The code is written in idiomatic C++98, using object-oriented features and generic 

programming based on C++ templates. For parallelisation, a hybrid scheme combining MPI 

and OpenMP is used. Each of M MPI processes has the same number T of threads for a total 

number of NVP = M∙T virtual processes. For a fixed number NVP of virtual processes (VP), 

any NEST simulation shall produce identical results regardless of how the virtual processes 

are divided between MPI processes and OpenMP threads. 

 
Figure 3: Fundamental data structures in NEST. Data structures on MPI rank 0 for (A) an example network 
of eight neurons with ring-like connectivity, which is simulated using two MPI processes and three 
threads per process. For simplicity, stimulating and recording devices are omitted. (B) Neuron 
infrastructure. For each local neuron (blue squares) the SparseNodeArray local_nodes (dark green) 
stores a struct of a pointer to the neuron and the neuron’s GID. The two-dimensional vector nodes_vec 
(light green) stores a pointer to the local neurons sorted by thread. (C) Connection infrastructure. Each 
synapse is represented on the thread of its target neuron. Each thread owns a sparse table (dark orange), 
which stores a pointer to a Connector (orange) for every source neuron that has targets on the thread. 
The connectors hold the local synapses (pink) sorted by type (here only one static synapse per 
connector). From Kunkel and Schenck (2017) under CC BY license. 

NEST simulations have two distinct phases: a network construction (build) phase and a 

simulation phase. The key part of the build phase is the construction of network connectivity, 

i.e., building in largely random order a hierarchical data structure representing connections 

between neurons; each connection is represented only on the virtual process managing the 

connection’s target neuron. For large simulations, this data structure dominates memory 

consumption. The NEST memory model can provide estimates of memory requirements 

                                                
3
 S. Kunkel, M. Schmidt, J. M. Eppler, G. Masumoto, J. Igarashi, S. Ishii and et al., “Improved memory model and 

overhead reduction: Spiking network simulation code for petascale computers,” in Front. Neuroinform. 8:78. doi: 
10.3389/fninf.2014.00078, 2014. 



D1.2  Application use cases and traces 

18 

DEEP-EST - 754304  28.03.2018 

based on a small number of parameters2,4. The build phase takes up a significant fraction of 

the overall time for a simulation experiment and can well be in the range taken up by the 

simulation phase. 

During the simulation phase, differential equations for the individual neurons are updated and 

spikes emitted according to a threshold criterion. Information on emitted spikes is exchanged 

between MPI processes and threads in steps of the minimal synaptic delay in the network, 

which is the maximum interval permitted by causality. Spikes are delivered to target neurons 

in parallel, each virtual process being responsible for delivery to the set of neurons it 

manages. This delivery process entails essentially random accesses to the connectivity data 

structure. 

NEST does not implement a specific network model but provides the user with a range of 

neuron and synapse models and efficient routines to connect them to complex networks with 

on the order of ten thousand incoming and outgoing connections for each neuron. Concrete 

network models and the corresponding simulation experiments are specified by model 

description scripts. These scripts are written either in NEST’s built-in simulation language SLI 

(based on PostScript) or using the Cython-based Python interface PyNEST5,6, with PyNEST 

being the default interface. 

2.1.1.2 Network representation 

NEST represents a neuronal network as a directed graph. For currently relevant use cases, 

this graph has between 105 and 109 neurons7, while future simulations of models of the 

human brain will comprise some 1011 neurons. The in- and out-degree of neurons is around 

104, with connections (edges) spread widely throughout the entire graph, i.e., the graph can 

generally not be partitioned into weakly coupled subgraphs. The total number of connections 

in current use cases is thus 109–1013 connections, which need to be stored, distributed 

across compute nodes. 

Each neuron is represented on exactly one virtual process (VP) by a C++ object with a 

typical size of around 1 KByte, although some neuron models have considerably larger 

neuron objects. Neurons are assigned to VPs in a round-robin fashion, and each neuron is 

identified by a globally unique global ID (GID, 64-bit integer). 

The state of typical neurons is represented by a small number (< 10) of doubles governed by 

linear differential equations, which are updated using exact integration8. A single update step 

usually requires of the order of ten additions and multiplications. More complex neurons 

described by systems of non-linear ODEs are currently integrated using solvers from the 

                                                
4
 S. Kunkel, T. C. Potjans, J. M. Eppler, H. E. Plesser, A. Morrison and M. Diesmann, “Initial memory model and 

overhead reduction: Meeting the memory challenges of brain-scale network simulation,” in Front. Neuroinform. 
5:35. doi: 10.3389/fninf.2011.00035, 2012. 
5
 J. M. Eppler, M. Helias, E. Muller, M. Diesmann and M.-O. Gewaltig, “PyNEST: a convenient interface to the 

NEST simulator,” in Front. Neuroinform. 2:12. doi: 10.3389/neuro.11.012.2008, 2008. 
6
 Y. V. Zaytsev and A. Morrison, “CyNEST: a maintainable Cython-based interface for the NEST simulator,” in 

Front. Neuroinform. 8:23. doi: 10.3389/fninf.2014.00023, 2014. 
7
 In graph theoretical terminology, the neuronal network should be described in terms of nodes connected by 

edges. Since the use of “node” invariably will lead to confusion with compute nodes, it will be referred to the 
nodes of the neuronal network as “neurons” throughout, even though some of these “neurons” may represent 
devices, i.e., nodes injecting signals into or recording signals from the network. Also “connections” is used for the 
edges of the graph. 
8
 S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant linear systems with applications to 

neuronal modeling,” in Biol. Cybern. 81, 1999, pp. 381-402. 
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GNU Scientific Library (GSL); the most complex model currently implemented has a 16-

dimensional state vector. 

Connections between neurons are represented exclusively on the VP storing the target node 

of the connection. This is (a) necessary for large-scale simulations where the memory 

required to store connections by far exceeds the memory available on a single compute 

node, (b) permits the connection construction in parallel on all VPs in most cases and (c) 

minimizes the amount of information that needs to be exchanged between processes; for 

details, refer to papers on the initial pure MPI implementation9 and the current hybrid MPI-

thread implementation10. 

The current data structures used to represent neurons and connections are based on 

systematic memory modelling and consequent optimisation2,3. There are also recent results 

on network construction and sensitivity to memory allocation issues for large numbers of 

threads11. 

The NEST kernel described so far and illustrated in Figure 2 is the so-called 4th-generation 

simulation kernel used in NEST releases 2.6.0–2.14.0. A new, 5th-generation NEST kernel is 

currently in prototype state and is expected to be integrated in the mainline NEST kernel by 

Q2/2018. The key step from NEST-2.14 to NEST-5G is a new connectivity representation 

and spike exchange scheme using directed communication based on MPI_Alltoall(); for 

details see Jordan et al. (2018)12. 

2.1.1.3 Network dynamics 

 
Figure 4: Five spike buffers for a simulation cycle with four neuronal update steps and for a network of 
eight neurons, which is simulated using two MPI processes and three threads per process. (A) During 
neuronal updates the three-dimensional vector spike_register stores the GIDs of the local neurons that 
spike (dark grey squares) sorted by thread and update step. (B) Before MPI communication each rank 
collocates its send buffer based on the entries in its spike_register. Communication markers (light gray 

                                                
9
 A. Morrison, C. Mehring, T. Geisel, A. Artsen and M. Diesmann, “Advancing the boundaries of high connectivity 

network simulation with distributed computing,” in Neural Comput. 17 1776–1801. doi: 
10.1162/0899766054026648, 2005. 
10

 H. E. Plesser, J. M. Eppler, A. Morrison, M. Diesmann and M.-O. Gewaltig, “Hybrid MPI-thread parallelisation: 
Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers,” in Euro-
Par 2007: Parallel Processing, Vol. 4641, Lecture Notes in Computer Science, eds A.-M. Kermarrec, L. Bougé, 
and T. Priol (Berlin: Springer-Verlag) 672–681. doi: 10.1007/978-3-540-74466-5, 2007. 
11

 T. Ippen, J. M. Eppler, H. E. Plesser and M. Diesmann, “Improved network construction and memory allocation 
for massively parallel systems: Constructing Neuronal Network Models in Massively Parallel Environments,” in 
Front. Neuroinform. 11:30. doi: 10.3389/fninf.2017.00030, 2017. 
12

 Jordan J, Ippen T, Helias M, Kitayama I, Sato M, Igarashi J, Diesmann M and Kunkel S (2018) Extremely 
Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Front. Neuroinform. 

12:2. doi: 10.3389/fninf.2018.00002 
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squares) define update step and thread. Buffers may not be completely filled (white squares). (C) After 
MPI communication using MPI_Allgather, each rank holds the complete spike data in its receive buffer 
(global spike buffer), which is the concatenation of the send buffers of all ranks.  Modified from Kunkel 
and Schenck (2017) under CC BY license. 

Neurons are usually updated on a fixed time grid and check at the end of each time step 

whether a threshold condition is fulfilled. In that case, the neuron emits an output pulse, it 

“fires a spike”. Since spikes are stereotyped pulses, the only relevant information about a 

spike event is (a) the GID of the neuron emitting the spike and (b) the time step at which the 

spike is emitted. Spikes are transmitted to all connection targets of a neuron with a finite, 

non-zero delay and a weight, which may differ from connection to connection. Because 

spikes are always with finite delay, updates on different VPs can be decoupled for as long as 

the minimal propagation delay without violating causality. Virtual processes therefore 

independently update their neurons throughout a full minimum-delay interval and buffer 

spikes emitted during this interval locally. 

At the end of each minimum-delay interval, spikes are first aggregated across all threads on 

each MPI process and then exchanged between MPI processes using MPI_Allgather() 

or MPI_Allgatherv(). During this exchange, only the GIDs of the neurons that have 

spiked need to be communicated, while time-step information is provided by sentinels (see 

Morrison et al. (2005)8 for details). This keeps the total amount of data to be exchanged 

small. 

After the MPI exchange, each VP knows about all spikes emitted in the entire network during 

the previous minimum delay interval. Each VP now delivers these spikes to all their 

connection targets on the given VP. This requires (a) an almost random traversal of the large 

adjacency data structure representing connections (50% of all memory for mid-size 

networks, well over 90% for very large networks2,10), (b) almost random write access to the 

input buffers of neurons receiving spikes, and (c) for plastic connections, i.e., connections 

with weights changing over time, modifying access to the activity history of target neurons11. 

2.1.2 What to measure 

The key performance measure for NEST is time to solution. This time includes the time for 

network construction (build time) and for simulating network dynamics (simulation time). Our 

benchmark JUBE scripts extract these numbers. For most applications, minimizing the 

simulation time has top priority, provided that the build time does not increase significantly as 

a side effect. 

The main constraint on large-scale network simulations with NEST is the memory required to 

store network connectivity. Therefore, the total virtual memory size for the simulation must 

not increase significantly due to optimisations. This memory size is also reported by our 

JUBE scripts. 

Past benchmarking and analysis efforts indicate that the "deliver events" phase of the 

simulation loop consumes most time. This phase requires repeated, and essentially random, 

lookups in the connectivity data structure illustrated in Figure 3C, followed by write 

operations into the input buffers of neurons receiving spikes, also in random order. The call 

path for this process is 

SimulationManager::update_() 
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-> EventDeliveryManager::deliver_events() 

-> ConnectionManager::send() 

-> Connector::send() 

-> <SomeConnectionClass>::send() 

-> SpikeEvent::operator()() 

-> iaf_psc_alpha::handle( SpikeEvent& ) 

In this chain, 

 deliver_events() iterates over all spikes fired during the previous minimum delay 

interval. 

 ConnectionManager::send() performs one sparse table lookup per spike (cf. 

Figure 3C); the sparse table has one entry per neuron in the network. Subsequent 

lookups will jump randomly through the sparse table. 

 Connector::send() iterates over all connection targets that a given sender neuron 

has on a given thread.  These targets are essentially random among the neurons 

managed by a thread. 

 <SomeConnectionClass>::send() and SpikeEvent::operator()() 

essentially forward the spike event; for networks with plastic connectivity, this step 

may involve additional, complex operations. 

 iaf_psc_alpha::handle( SpikeEvent& ) registers the spike in the input 

buffer of the neuron (write operation). 

The last step writes into a RingBuffer. Each neuron has three ring buffers. These buffers 

are std::vector<double> and are created/resized by the init_buffers_() method of 

each neuron model class during the "Prepare nodes" phase. The size of the ring buffers is 

given by the sum of the shortest and longest transmission delay in the network, expressed in 

simulation time steps; it is the same for all neurons in a simulation.  

Initial attempts to trace performance of the spike delivery process using Extrae have run into 

problems due to the extremely large traces generated as the handle() method is called 

very frequently. We have not yet explored windowing or selective sampling. 

2.1.3 Benchmarks 

2.1.3.1 Code requirements 

The DEEP-EST GitLab repository contains both NEST 2.14 and NEST 5G versions. While 

NEST 2.14 is a definite release and code will not be modified in the future, the source code 

in the NEST 5G repository may still be modified as we optimise and prepare it for mainline 

integration. NEST 5G is mainly provided to explore the effect of the new communication 

patterns used in that kernel.  

We recommend using the thread-aware Jemalloc allocator with NEST 2.14 to achieve faster 

build times4. To obtain reproducible results for simulations using the same total number of 

threads but different combinations of number of tasks and number of threads per task, 

compiling NEST in a way that ensures strict IEEE754 compliance is required. In our 

experience so far, this has only marginal effect on performance, since NEST is heavy on 

memory access and relatively light on floating-point operations. 
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2.1.3.2 Benchmark configurations 

Benchmarks are implemented using the native SLI language of the NEST simulator, a 

PostScript-like language with domain-specific extensions. We provide two different 

benchmarks at present, of which the second (simplified multi-area model benchmark) is the 

scientifically most relevant. Several JUBE configurations for each benchmark are provided, 

as described in detail in the README.md file in the NEST section of the Benchmark 

repository. Additional suggestions for scaling are given in Section 2.1.3.2.3, while Section 

2.1.3.4 provides information on how to interpret benchmark output. 

2.1.3.2.1 Standard HPC benchmark 

A standard HPC benchmark has been used to evaluate NEST performance in several recent 

publications2,10. This benchmark simulates a network model with two neuronal populations 

(80% and 20%) in which each neuron has K=11,250 incoming synapses. The network size 

can be scaled freely from scale 10 upwards (112,500 neurons); for smaller network sizes, K 

is reduced. Average neuron firing rates are typically 5 to 10 Hz. All synaptic delays are fixed 

to 1.5 ms and 64% of the synapses are plastic, while the remainder are static. 

Important properties of this benchmark case are 

 the minimal delay is 1.5 ms, while the simulation time step is 0.1 ms. Therefore, 

thread synchronization and MPI communication is required only once every 15 

simulation time steps; 

 neurons in this benchmark have relatively small input ring buffers (3 buffers with 30 

doubles per neuron). Simulating approximately 10000 neurons per process, the total 

size of the ring buffers is thus approximately 7MB per process; 

 transmitting spikes via plastic synapses involves complex operations (spike history 

lookup in dequeues, computation of exponentials). 

2.1.3.2.2 Simplified multi-area model benchmark 

This benchmark closely mimics the behaviour of the neuroscientifically relevant multi-area 

model in terms of memory access patterns, computational load, and communication load. 

The benchmark deviates from the standard benchmark in the following ways:  

 the number of incoming synapses is reduced to half (K=5625); 

 all synapses have static weights; 

 the average firing rate is increased to approximately 14.8 spikes/s; 

 transmission delays are uniformly distributed in [0.1, 50] ms. 

Important consequences of these changes are 

 significantly reduced memory requirement; 

 a minimum delay of 0.1 ms and hence thread synchronization and MPI 

communication after each time step (15 times more often than in the standard 

benchmark); 

 larger ring buffers with 501 elements each, so that ring buffers in total require 

approximately 43MB per process; 

 no complex plasticity operations during spike delivery. 
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This hpc_mam benchmark therefore stresses crucial parts of the system (process 

synchronization, communication, random writes to ring buffers) more than the standard 

benchmark.  

2.1.3.2.3 Scaling options 

To create new benchmark configurations, copy one of the existing benchmark scripts in the 

folder jube_hpc and modify the following section (last three lines do not apply to hpc_mam): 

<parameterset name="scale_check"> 

  <parameter name="SCALE" type="int">20</parameter> 

  <parameter name="SIMTIME" type="float">1000</parameter> 

  <parameter name="NUM_REC" type="int">1000</parameter> 

  <parameter name="PLASTIC" type="string">false</parameter> 

  <parameter name="D_MIN" type="float">0.1</parameter> 

  <parameter name="D_MAX" type="float">1.5</parameter> 

  <parameter name="NUMBER_OF_NODES" type="int">1</parameter> 

  <parameter name="TASKS_PER_NODE" type="int">24</parameter> 

  <parameter name="THREADS_PER_TASK" type="int">1</parameter> 

</parameterset> 

 SCALE determines the number of neurons: Scale 1 corresponds to 11,250 neurons. 

 SIMTIME is the simulation time after equilibration in ms; this can be shortened. 

 NUM_REC is the number of neurons to record activity from. 

 PLASTIC determines whether synapses are plastic (true) or note (false). 

 D_MIN is the minimum transmission delay in ms. 

 D_MAX is the maximum transmission delay in ms. 

 NUMBER_OF_NODES is the number of compute nodes to use (SLURM). 

 TASKS_PER_NODE is the number of MPI tasks per compute node (SLURM). 

 THREADS_PER_TASK is the number of OpenMP threads per MPI task (SLURM). 

Remarks: 

 For the standard benchmark: PLASTIC==true, D_MIN=1.5, D_MAX=1.5. 

 For the mam benchmark: PLASTIC==false, D_MIN=0.1, D_MAX=50.0 (not 

configurable). 

 The total number of virtual processes is given by N_VP = NUMBER_OF_NODES x 

TASKS_PER_NODE x THREADS_PER_TASK. 

 Benchmarks performed with the same N_VP but different splits between nodes, tasks 

and threads shall return the same simulation results (number of spikes, see section 

on output). 

 Small values of D_MIN require more frequent thread synchronization and MPI 

communication. 

 Ring buffer size is given by 10 x (D_MIN + D_MAX). 

2.1.3.3 Benchmark stages 

Both benchmarks proceed in the following stages and provide output after each stage: 

1. NEST startup. NEST starts, including MPI_Init(), loads all libraries and prints 

welcome message. 
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2. Create neurons and devices. All network nodes created; expected additional 

memory use is small. 

3. Connect neurons. Most memory allocation occurs during this phase. 

4. Initial simulation phase. Prepare simulation (MPI communication to exchange 

minimal and maximal delay, resizing ring buffers to correct size, calibrate individual 

neurons; in NEST 5G also exchange of connectivity information) and simulate 10 ms. 

5. Presimulation phase. Simulate 90 ms to allow initial transients in network activity to 

subside. 

6. Simulation phase. Simulate for given SIMTIME, by default 1000 ms. 

2.1.3.4 Benchmark output 

All benchmark output is written to stdout by all MPI ranks. Output contains normal NEST 

startup and progress messages as well as the following benchmark log messages: 

0 153236 # virt_mem_0 

 

0 1.41 # build_time_nodes 

0 752880 # virt_mem_after_nodes 

 

0 96.51 # build_edge_time  

0 70578416 # virt_mem_after_edges 

 

0 70578416 # virt_mem_after_init 

0 0.85 # init_time 

 

0 70578416 # virt_mem_after_presim 

0 6.41 # presim_time 

 

0 70578416 # virt_mem_after_sim 

0 71.33 # sim_time 

 

0 7.531 # average rate 

0 225000 # num_neurons 

0 2531476000 # num_connections 

0 1.5 # min_delay 

0 1.5 # max_delay 

0 1723039 # local_spike_counter 

 The first number on each line is the rank reporting the information. 

 virt_mem entries are virtual memory size in KB after the respective phases. 

 time entries are time in seconds used for different phases. 

 average_rate is averaged over locally recorded neurons, while 

local_spike_counter is the total number of spikes fired on the given rank; this 

number is more reliable than average_rate. 

 local_spike_counter should be summed across all ranks for comparisons. 

 num_neurons is the total number of neurons in the network. 

 num_connections is the number of connections on the rank, it should be summed 

across ranks to obtain the total number of connections in the network. 
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JUBE output for NEST benchmarks is approximately as follows (slightly simplified for 

formatting purposes): 

Table 1: JUBE output for NEST benchmarks. 

N_NODES TSKS_P_ND THR_P_TSK SCALE T_nrns T_conns T_ini T_equ T_sim VSize N_spks Rate N_nrns N_conns 

1 24 1 4 0.02 2.87 0.29 1.12 13.09 6881856 1303925 28.9 45000 101284246 

Here 

 T_nrns is the time to create neurons. 

 T_conns the time to create connections. 

 T_ini the time for the initial simulation. 

 T_equ the time for presimulation. 

 T_sim the time for simulation SIMTIME. 

 VSize the virtual memory size at the end of the simulation, summed across ranks. 

 N_spks the total number of spikes fired during the simulation. 

 Rate the average firing rate across ranks. 

 N_nrns the total number of neurons in the network. 

 N_conns the total number of connections in the network. 

For T_conns and T_ini, both minimum and maximum across ranks are given. Differences 

are usually due to waiting times, so one usually has T_conns_min + T_ini_max == 

T_conns_max + T_ini_min. For NEST 5G, T_ini will contain the time required to 

exchange connectivity information between ranks; in general, one should therefore consider 

the sum T_conns + T_ini for comparisons. 

2.2 Benchmarking Arbor 

2.2.1 Application structure 

Arbor simulates compartmental neuron models. This means that the spatial structure of each 

neuron is represented as a spherical cell body (soma), to which an arbitrary number of 

dendritic trees are attached. Each dendritic tree consists of segments, i.e. tubes or cables, of 

a given length and radius; in the simulation, each segment is represented by a configurable 

number of compartments. Each segment is either connected to one other segment at each of 

its ends (linear cable) or to several segments at its far end (branching point; far end: end 

pointing away from the soma). Electric currents flow along the cables formed by the dendritic 

tree. This current flow is described by ordinary differential equations, with one set of 

equations for each compartment, coupled to neighbouring compartments. The main task of 

the Arbor is to solve the resulting system of ODEs; this task is highly amenable to 

vectorisation. In addition, Arbor also transmits spikes between neurons via synapses; this 

mechanism is of lesser importance for our purposes because HybridLFPy is based on 

simulating the dynamics of disconnected compartmental neurons based on spike input 

generated by NEST. 
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Arbor is a C++11 application that parallelises using MPI, C++11 threads and Intel TBB. It 

supports vectorisation using AVX2 and AVX512 as well as GPGPUs through CUDA. At 

present, Arbor simulations need to be hard-coded in C++, although a Python front-end is 

under development. Arbor benchmarks for DEEP-EST will therefore be based on a "miniapp" 

example included with the Arbor source code. Once the Python front-end becomes available, 

we will extend the range of benchmarks. 

The present Arbor benchmarks rely on pure synthetic input data. Arbor simulations will 

provide by far the largest computational load of the Arbor/HybridLFPy toolchain. Arbor 

benefits significantly from vectorisation. Its CMake file supports compilation for AVX2 and 

AVX512, for which we provide JUBE build files, and also supports CUDA and TBB; see 

README.md for details. We strongly recommend benchmarking Arbor only with 

vectorisation support enabled, as Arbor is extremely slow without it. 

2.2.2 What to measure 

Similarly to NEST, time to completion is essential for Arbor. It is composed of a model-init 

and model-simulation time. Simulation time in particular should be minimized, provided that 

initialization time does not increase significantly. As Arbor will only be used to model a small 

subset of the full-scale NEST models, memory consumption does not play a significant role 

in Arbor benchmarks. 

2.2.3 Benchmarks 

2.2.3.1 Code requirements 

Code installation and requirements are described in the README.md file in the DEEP-EST 

Gitlab repository for NEST benchmarks. 

2.2.3.2 Benchmark configurations 

All benchmark configurations use the Arbor example miniapp.exe executable, but with 

different neuron configurations. 

2.2.3.2.1 Standard three-segment-dendrite benchmark 

This is a simple benchmark case for Arbor. It implements a population of neurons, where 

each neuron consists of a soma and three dendritic segments: one starting at the soma and 

two branching at the end of the initial dendritic segment. Each dendritic segment is divided 

into a configurable number of compartments, which form a linear chain. Neurons are 

connected to each other in a random fashion through synapses. Started by an initial injected 

spike, neurons drive each other to spike. 

2.2.3.2.2 Non-spiking pyramidal cell benchmark 

This benchmark case reads the morphology (spatial structure) of a real neuron from file and 

creates a requested number of duplicates of this model neuron. The model neuron has some 

200 dendritic segments forming a complex tree structure. The numerical problem to be 

solved is thus somewhat more complex, since segments at branching points in the tree have 

three neighbours instead of two, and at least one of those neighbours is likely to not be in the 

immediate vicinity in the data structure representing the segment. Neurons are also 
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connected in a random fashion, but the cell parameters are chosen such that the neurons do 

not respond with new spikes to the initial spike injected into the network. 

2.2.3.2.3 Spiking pyramidal cell benchmark 

This benchmark case reads a scaled version of the morphology of the cell used in the non-

spiking benchmark case. As a consequence of this scaling, the neurons in this benchmark 

respond to the initial spike with output spikes of their own, leading to longer simulation times. 

2.2.3.3 Benchmark output 

JUBE scripts output for Arbor simulations is as follows (slightly simplified): 
Table 2: JUBE output for Arbor benchmarks. 

N_NODES TSKS_P_ND THR_P_TSK SCALE NUM_SYN NUM_COMP SIMTIME T_setup T_init T_simulate N_spikes 

1 1 48 2.0 2000 7 100.0 0.0 19.389 119.878 1 

 The first entries are the same as for NEST benchmarks, but Arbor benchmarks allow 

fractional SCALE. 

 NUM_SYN is the number of synapses per neuron. 

 NUM_COMP is the number of compartments per segment. To obtain a total of 

approximately 1000 compartments per neuron, comparable with relevant cases, this 

should be around 7 for the pyramidal cell cases and much larger for the three-

segment benchmark. 

 SIMTIME is the time simulated in milliseconds. 

 T_setup is setup time. 

 T_init is initialization time. 

 T_simulate is simulation time. 

 n_spikes is the number of spikes fired during SIMTIME, including the one injected 

spike. 

In addition, Arbor writes a detailed report indicating the time spent on stdout procedures, 

but we do not currently extract this information in our JUBE scripts. 

2.3 Benchmarking Elephant 

2.3.1 Application structure 

Elephant13 is a pure Python library for the statistical analysis of spike activity of neurons. It 

can be installed using standard Python distribution tools. Elephant implements a wide and 

growing range of analysis methods. Herein we focus mainly on the calculation of cross-

correlations between spike trains and the detection of repeated patterns of spike activity 

across groups of neurons, so-called synfire chains.  

Cross-correlations are detected using standard approaches, either implemented directly in 

Python or using NumPy convolution algorithms. Except for possible thread-parallelisation 

                                                
13

 https://elephant.readthedocs.io  

https://elephant.readthedocs.io/
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provided by the NumPy convolution implementation, cross-correlation algorithms are purely 

serial at present. 

Detection of synfire chains uses the ASSET algorithm14 in a recently optimised version15, 

replacing the non-optimised version currently included in the release version of Elephant. 

The optimised algorithm uses MPI4Py for parallelisation. 

2.3.2 What to measure 

Time to completion is the essential quantity for Elephant benchmarks as well. All Elephant 

benchmarks provided at present generate their own synthetic data. The time required to 

generate this synthetic data should not be taken into consideration when benchmarking 

Elephant. 

2.3.3 Benchmarks 

2.3.3.1 Code requirements 

The benchmarks require the most recent version of Elephant (0.4.3) to be installed, as 

described in the Elephant documentation. In addition, the optimised ASSET algorithm, 

including a Cython extension module, must be installed from the NEST Benchmark section of 

the DEEP-EST Gitlab repository. For details, see the README.md file in that repository. 

2.3.3.2 Benchmark configurations 

2.3.3.2.1 Pure-Python cross-correlation 

This benchmark computes cross-correlations between spike trains using a pure Python 

implementation. This benchmark is purely serial. 

2.3.3.2.2 NumPy-supported cross-correlation histograms 

This benchmark computes cross-correlation histograms between spike trains using NumPy 

convolution functions. This benchmark might benefit from thread-parallelisation, depending 

on the underlying NumPy libraries. 

2.3.3.2.3 ASSET on random data 

This benchmark applies the optimised ASSET algorithm to purely random data in which no 

synfire chains should be detected. This benchmark should benefit from MPI via MPI4Py. 

2.3.3.2.4 ASSET on data with patterns 

This benchmark applies the optimised ASSET algorithm to random data with an injected 

synfire chain. It should thus detect and report a chain. This benchmark should benefit from 

MPI via MPI4Py.  

                                                
14

 Torre E, Canova C, Denker M, Gerstein G, Helias M, Grün S (2016) ASSET: Analysis of Sequences of 
Synchronous Events in Massively Parallel Spike Trains. PLoS Comput Biol 12(7): e1004939. 
doi:10.1371/journal.pcbi.1004939 
15

 Carlos Canova, Wouter Klijn, Paul Baumeister, Alper Yegenoglu, Michael Denker, Dirk Pleiter, Sonja Grün 
(2017)  ASSET for JULIA: executing massive parallel spike correlation analysis on a KNL cluster. Poster 
presented at HBP Summit 2017. 
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3 Task 1.3: Molecular dynamics (NCSA) 

A molecular dynamics (MD) simulation, such as Gromacs, generally tracks the trajectories of 

many particles (atoms) evolving over time. It solves differential equations of motion in time 

steps. The coordinates and velocities of the particles are calculated by using the coordinates 

and velocities from the previous time step. In each time step one has to calculate forces 

acting on each atom. This is the most time consuming operation. Usually pairs of atoms are 

defined in a predefined cut-off radius calculating short range interactions, while the long 

range interactions are calculated using FFT based algorithms. 

3.1 Use case description 

MD simulations of different size and topology are set up to test and explore both the 

computer architecture and software optimisations if any. The prepared benchmark aim at 

exploring and test the hybrid MPI/OpenMP programing model of Gromacs, which utilises the 

most widely used families of vector instruction sets. The main benchmark set consist of three 

atomic systems described in the following table: 
Table 3: Gromacs use case description. 

Name Description 

Number of atoms 

Simulation box 
dimensions 

DEEP partition 

(number of nodes) 

Magainin 
Antimicrobial peptide Magainin 
solvated in water 

34k 

8x8x5.3 nm3 

KNL (1,2,4) 

SDV (1,2,4,8) 

Bombinin 
27 antimicrobial peptide 
Bombinin molecules forming 2 
aggregates in water solutions 

325k 

15x15x15 nm3 

KNL (1,2,4) 

SDV (1,2,4,8) 

Ribosome 
Ribosome unit solvated in 
water 

2.2M 

31.6x31.6x22.3 nm3 

KNL (1,2,4) 

SDV (1,2,4,8) 

The three benchmarks are chosen to explore the machines architecture and the 

corresponding interconnect. The molecular dynamics parameters (cut-off radii and long-

range electrostatics treatment) match the force field requirements while other parameters 

have typical values used by researchers.  The v-rescale thermostat and Parrinello-Rahman 

barostat are used to control temperature and pressure, respectively, and the time step is 

consistent with the level of restraining (h-bonds, all-bonds, v-sites). The Particle Mesh Ewald 

(PME) algorithm is used for the long-range electrostatics calculation. The reader is referred 

to the Gromacs documentation16 for a detailed description of algorithms and parameters. 

3.1.1 Magainin system 

The Magainin system has both the smallest number of atoms and box size and it is designed 

to scale on a couple of nodes.  V-sited is used when applying force field parameterisation 

and a fixed time step value of 5 fs is chosen (1fs is equal to 10-15s). Considering the limit of 

100 atoms per thread as an absolute lower limit of Gromacs efficiency, the magainin case 

should scale up to four SDV partition nodes. The data fit mostly in the CPU core’s cache and 

the benefit of using dedicated SIMD kernels should be visible. The size of communication 

                                                
16

 http://manual.gromacs.org/documentation/2018/manual-2018.pdf  
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messages is relatively small and therefore the parameter limiting scalability is the latency of 

the node interconnect network. 

3.1.2 Bombinin system 

Nowadays, the majority of researchers use systems of this size to do their studies. The 

bombinin system should scale up to tens of nodes. Only the bonds connecting the hydrogen 

atoms to heavy atoms are restrained and the time step is fixed to 2 fs. As the number of 

nodes increases, the number of atoms per CPU core decreases. Depending of the node 

interconnect network one should find the beneficial strategy of using balance between the 

number of MPI ranks per node and the number of OpenMP threads per MPI rank. 

3.1.3 Ribosome system 

This is a relatively big system and, for sufficiently long trajectories, one needs a 

supercomputing platform. All bonds are constrained and the time step value is 2 fs. 

Scalability starts degrading with a relative high number of nodes due to the increase in (i) all-

to-all communications between a dedicated subset of MPI ranks (PME algorithm) and (ii) 

point-to-point communications (particle domains – particle domain and particle domain – 

PME domain). 

3.2 Benchmarking metrics 

The quantity which we use to measure the performance is the simulated time per wall clock 

time units, namely nanoseconds per day [ns/day]. The faster the time step execution, the 

higher the performance. The time step value is determined by the physics. 

3.3 MD benchmarking metrics 

Our developed benchmark suite allows us to explore the performance of the main Gromacs 

simulation tool (mdrun) on both SDV nodes (sdv keyword) and KNL nodes (knl keyword). It 

consists of JUBE scripts and two bash shell scripts to execute run the JUBE benchmarks in a 

convenient way. Gromacs source code, benchmark systems, JUBE configuration files and 

shell scripts are hosted in the DEEP-EST GROMACS repository17. 

Firstly one should clone the git repository to get the source code and the rest of the files: 

git clone ssh://git@gitlab.version.fz-juelich.de:10022/DEEP-

EST/GROMACS.git  

The current version of Gromacs is located in src/gromacs-2018 subdirectory and the 

corresponding inputs for the test simulations can be found in the tests directory. JUBE xml 

files for compiling the MD package are: 

 gmx-2018-compile-knl.xml and 

 gmx-2018-compile-sdv.xml 

Each test simulation can be run on a KNL partition via the following JUBE scripts: 

 gmx-2018-magainin-knl.xml, 

 gmx-2018-bombinin-knl.xml and 
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 gmx-2018-ribosome-knl.xml. 

For the SDV partition the following JUBE scripts are available: 

 gmx-2018-magainin-sdv.xml, 

 gmx-2018-bombinin-sdv.xml and 

 gmx-2018-ribosome-sdv.xml. 

As already mentioned, the process of compiling, running and results gathering can be 

simplified with dedicated shell. Those scripts will display help messages (usage and detailed 

description) by passing the argument -h. The entire benchmark procedure, applied on a 

specific partition (sdv for SDV nodes or knl for KNL nodes), consists of executing the 

following commands: 

./compile-gromacs-2018-jube.sh <partition> 

./submit-benchmarks.sh <partition> 

./analyse-show-result-benchmarks.sh <partition> 

The above compilation steps should not take more than 15 minutes. 

Each benchmark case consists of a number of runs shown in the following table (wall clock 

execution time of 180 seconds): 
Table 4 Gromacs benchmarks. 

Partition 
Benchmark 

case 
Number 
of runs 

Nodes/(MPIs per node)/(threads per MPI) 

KNL Magainin 10 
1/1/64, 1/1/128, 1/64/1, 1/64/2, 2/1/64, 2/1/128, 2/64/1, 
2/64/2, 4/1/64, 4/1/128 

KNL Bombinin 12 
1/1/64, 1/1/128, 1/64/1, 1/64/2, 2/1/64, 2/1/128, 2/64/1, 
2/64/2, 4/1/64, 4/1/128, 4/64/1, 4/64/2 

KNL Ribosome 12 
1/1/64, 1/1/128, 1/64/1, 1/64/2, 2/1/64, 2/1/128, 2/64/1, 
2/64/2, 4/1/64, 4/1/128, 4/64/1, 4/64/2 

SDV Magainin 14 
1/1/24, 1/1/48, 1/24/1, 1/24/2, 2/1/24, 2/1/48, 2/24/1, 
2/24/2, 4/1/24, 4/1/48, 4/24/1, 4/24/2, 8/1/24, 8/1/48 

SDV Bombinin 16 
1/1/24, 1/1/48, 1/24/1, 1/24/2, 2/1/24, 2/1/48, 2/24/1, 
2/24/2, 4/1/24, 4/1/48, 4/24/1, 4/24/2, 8/1/24, 8/1/48, 
8/24/1, 8/24/2 

SDV Ribosome 16 
1/1/24, 1/1/48, 1/24/1, 1/24/2, 2/1/24, 2/1/48, 2/24/1, 
2/24/2, 4/1/24, 4/1/48, 4/24/1, 4/24/2, 8/1/24, 8/1/48, 
8/24/1, 8/24/2 

The time needed for running benchmarks on 4 KNL nodes or 8 SDV nodes should not 

exceed one hour. 

3.4 MD benchmarking results 

Some results of Gromacs performance on KNL and SDV partitions with different number of 

MPI processes per node and number of threads per MPI process are show in the following 

table: 
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Table 5: Gromacs benchmarking results. 
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4 Task 1.4: Radio astronomy (ASTRON) 

ASTRON has two applications for which will be set a performance baseline: the correlator 

and the imager. The correlator combines the signals from tens or hundreds of receivers, 

while the imager creates sky images from these correlations (after removing bad data 

affected by interference and after correlations are calibrated to compensate for instrumental 

and environmental effects). Both applications are described in the Application Description 

document.18 

4.1 What to measure 

Fortunately, both applications can benchmark themselves: they contain code that measures 

the runtimes (in seconds) and the performance (in TFLOPS) of all relevant compute kernels, 

as well as energy efficiency (in GFLOP/J) using either LIKWID19 or PowerSensor20. 

Measuring energy efficiency is optional: if these libraries are not available, the applications 

are benchmarked without energy efficiency measurements. Yet, we are interested in energy 

efficiency, as this is not only a fair way to compare different processor architectures (more 

fair than just comparing FLOP counts), but also because the energy budget for imaging of 

the Square Kilometre Array (SKA) is tight: 5 MW per site for the entire Science Data 

processor. Imaging (gridding, degridding, FFTs) will need a large fraction of this, because 

this is computationally the most expensive operation. 

Within the DEEP-EST project, we develop new implementations of our applications for 

FPGAs (using Intel's OpenCL/FPGA toolkit) and a new CUDA-based correlator using tensor 

core operations (tensor cores are special-purpose hardware designed to boost deep learning 

performance by roughly a factor of eight, but as they do just mixed-precision matrix 

multiplication, they should boost signal processing by a similar amount). These new 

implementations are still highly experimental and incomplete, and therefore they cannot be 

used to set a performance baseline. Instead, we will use versions of our applications that are 

somewhat more mature. 

4.2 Measurement setup 

Both applications can be run in such a way that they generate synthetic input, on the fly. This 

simplifies benchmarking and allows isolating compute performance from I/O performance. In 

the particular case of the correlator, it is difficult to set up I/O experiments because the high 

data rates require manual binding of network interrupt handlers and application threads to 

disjoint sets of CPU cores (which requires superuser privileges). This is further complicated 

in the presence of NUMA restrictions. Hence, we propose to only benchmark the 

computational part, even though we are well aware that I/O is challenging. 

Neither of the applications uses MPI and thus run on a single machine. However, both 

applications perform poorly on CPU-only machines for different reasons. For the correlator, it 

would be fine to do the multiplications in 8 or 16 bits (short int or half float) depending on the 

                                                
18

 https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/d2411360/application-description-ASTRON.pdf 
19

 J. Treibig, G. Hager, and G. Wellein. LIKWID: A Lightweight Performance-oriented Tool Suite for x86 Multicore 
Environments. International Conference on Parallel Processing Workshops (ICPPW'10), pp. 207-216, San Diego, 
CA, September 2010. 
20

 J.W. Romein and B. Veenboer. PowerSensor 2: a Fast Power Measurement Tool. IEEE International  
Symposium on Performance Analysis of Systems and Software (ISPASS'18), Belfast, Northern Ireland, United 
Kingdom, April 2018, to appear. 

https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/d2411360/application-description-ASTRON.pdf
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telescope and the RFI (Radio Frequency Interference) environment; the minimum 32-bit 

operand size of present-day CPUs is overkill. Preliminary experiments with GPUs that 

support smaller operand sizes show that 40-80 TFLOPS can be achieved while high-end 

CPUs achieve about 2 TFLOPS (single precision floating point). The imager needs very good 

sine/cosine performance, as in the critical path, the imager does one sine/cosine operation 

for every 17 fused-multiply-add operations. Current CPUs cannot perform such 

transcendental operations using single hardware vector instructions. Hence on CPUs the 

imager spends roughly 85% of the time computing sines and cosines. In contrast, GPUs can 

perform these operations with dedicated hardware (some GPUs even concurrently with 

fused-multiply-add instructions). The performance/energy efficiency gap between GPUs and 

CPUs is typically about a factor of 15. As a result, we think that setting a performance 

baseline on CPUs (like the SDV) is not meaningful: it would be too easy to improve on this in 

the course of this project, and the SKA Science Data Processor cannot be built within its 

power constraints using CPU-only systems. We therefore propose to use a GPU-based 

system like JURON as reference platform, as accelerators are indispensable on our path to 

exa-scale. 

Both applications are implemented in OpenCL and CUDA. For the correlator, the OpenCL 

implementation is more complete and robust (it is in operational use by the AARTFAAC 

telescope), while the CUDA implementation is an experimental mock-up, more suitable for 

research. For the imager, the OpenCL and CUDA implementations are similar. On NVIDIA 

GPUs, it is better to use the CUDA implementation, as it performs better (even though there 

is no fundamental reason why the OpenCL implementation could not perform as well as the 

CUDA implementation) and because the NVIDIA Visual Profiler does not support OpenCL 

applications anymore. 

Creating traces with extrae remains a challenge. The CUDA implementations of the imager 

and correlator cannot be profiled out of the box, because extrae only supports applications 

that are written using the CUDA runtime API (which makes sense, as a vast majority of the 

CUDA applications are written using this runtime API). Our applications, in contrast, use the 

CUDA driver API, which is more low level, but gives more control over the GPU. In particular, 

we need the driver API to perform runtime compilation. As all observation parameters (e.g., 

the number of receivers, frequency channels and integration times) are constant for a 

particular observation, the GPU kernels are compiled at run time, so that these variable 

parameters in fact become constants. This does not only result in more efficient code, it also 

results in much more readable code, because in CUDA and OpenCL multi-dimensional 

arrays can only be declared when their dimensions are fixed. Indexing a fixed-sized multi-

dimensional array as 

samples[receiver][channel][time], 

is much more readable than indexing it as a flat, variable-sized, single-dimensional array like 

samples[(receiver*nr_channels + channel)*nr_times + time]. 

Instead of extrae, the NVIDIA Visual Profiler (or command-line profiler) could be used to 

create traces. 

Profiling the OpenCL implementations of our applications with extrae should have been 

possible, but unfortunately it is not possible at this moment and would need some non-trivial 

fixes in extrae first. On AMD GPUs, we also found that profiling the OpenCL code with 

CodeXL is highly problematic; in fact, CodeXL 1.2 and 1.7 were the only versions that we 
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managed to get working, and these versions only work on older systems. Especially remote 

profiling, where the GPUs and the screen are not in the same machine, does not always 

work as it should do. 

 
Figure 5: Timeline of the imager application. PCIe transfer rates of 12.5 GB/s are not sufficient to keep the 
GPU busy (top figure), while NVLINK transfer rates of 68 GB/s are (bottom figure). 

Both the correlator and the imager are PCIe bandwidth bound when running on high-end 

GPUs that are connected by PCIe. The maximum throughput that can be achieved on PCIe-

bases systems is normally 12-13 GB/s, but to keep a high-end GPU busy, both applications 

need 30-40 GB/s of input data (see Figure 5). This limitation can be overcome by using a 

system with NVLINK between the CPU and the GPU, like the systems on Juron. 

There is no need to profile the applications for a long time, especially for the correlator, which 

shows highly jitter-free runtime behaviour: each integration time (typically about a second) 

the same operations are performed on equal-sized blocks with input data, so there is little 

variability. The only caveat is that GPUs need a few minutes to heat up, while a hot GPU 

typically runs at a slightly lower clock frequency than a cold GPU (due to leakage, a hot GPU 

needs more power, while the clock frequency is dynamically adjusted to prevent the GPU 

from drawing more power than it is allowed to do). 

4.3 Application parameters 

For the correlator, we normally simulate a large number of receivers (stations). A typical 

number is 576, the number of antennas in the AARTFAAC telescope. This version of the 

correlator is not optimised for “small” numbers of receivers (e.g., for LOFAR, different GPU 

kernels are used that are more optimised for up to 80 stations). A typical number of 

frequency channels that the PolyPhase Filter bank should create is 64, a typical number of 

time steps over which is integrated is 3072. Also, we assume dual polarized receivers (X and 

Y), and the correlations contain all polarization pairs (XX, XY, YX, YY). These numbers are 

representative for a real radio telescope, while the corresponding data structures fit in (GPU) 

memory. As all these numbers are the default values, there are no parameters that need to 

be changed when running the correlator application. 

For the imager, the parameter space is close to infinite, and for a given observation it is 

virtually impossible to determine the most optimal parameter set a priori (for example, 

because there are techniques that trade memory usage for compute effort, and because 

some parameters change the balance between the computational costs for gridding and the 

costs for FFTs). How these parameters affect the imaging process requires a deep 

understanding of the algorithm, and is beyond the scope of this document. So to establish a 

performance baseline, we select a “reasonable” parameter set. All parameters can be 

changed by setting the environment variables below, prior to starting the application: 
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 NR_STATIONS 120 

 NR_CHANNELS 16 

 NR_TIME  8192 

 NR_TIMESLOTS do not set 

 IMAGESIZE  do not set 

 GRIDSIZE  8192 

 SUBGRIDSIZE 32 

 KERNELSIZE  do not set 

 NR_CYCLES  4 

These numbers are already beyond what is needed for LOFAR observations (up to 80 

stations). Eventually, we will scale these numbers to what is required for the Square 

Kilometre Array, (e.g., 512 stations and 100,000x100,000 grid sizes), but to scale to these 

sizes, the imager needs to use GPU page migration (unified memory) to dynamically map 

parts of the grid into GPU device memory. As support for unified memory is still experimental 

in the imager, we will not use this, but use the GPU-only imager (cuda-generic.x) for setting 

the performance baseline, with parameters chosen such that everything fits in GPU device 

memory. When benchmarking the application, the runtime can be increased by running 

multiple cycles that repeat the whole process of gridding, FFTing, and degridding. The 

execution times, FLOP counts, and possibly energy measurements can be averaged then.  
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5 Task 1.5: Space Weather (KU Leuven) 

In this section we present the benchmark cases that are used for the applications of KU 

Leuven. These benchmarks are used to test the basic features of the codes, focusing in 

particular in memory use, performance and I/O. 

For each application we propose four benchmarks. One of them represents a real-size 

operational run, and requires a longer runtime. This large benchmark cannot be used for 

profiling with optimisation tools: it is only used to gather the runtime of the code under 

realistic conditions. 

Two other types of benchmarks have been included: micro-benchmarks and mid-size-

benchmarks. The former feature run-times of the order of less than one minute while the later 

feature run-times up to 15 minutes. These can be used for quick node testing. 

5.1 xPic 

The following tables present the four benchmarks of the code xPic that will be performed all 

along the duration of the DEEP-EST project. They will be used to stress different parts of the 

DEEP-EST system and to check that new developments have a positive impact in the code 

performance. We defined four types of benchmarks: 

1. A micro-benchmark for comparisons with iPic3D. 

2. A large benchmark to check the code under realistic conditions. 

3. A mid-size benchmark to test the code under realistic conditions and test I/O. 

4. A micro-benchmark to test the effects of cache misses. 

Benchmarks 3 and 4 feature two different input files to perform the comparisons. 

Table 6 shows the benchmark 1 conditions using the input file: test_02 (the names of the 

tests correspond to the names of the input files included in the code, and not to the order in 

this document). The objective of this benchmark is to test code performance on conditions 

similar to those used in the iPic3D code. 

The number of blocks has been selected to fit the cache memory size. This value is 

architecture-specific and thus might need to be readjusted. 

Table 6: xPic benchmark 1. 

Parameter Description Observations [unit of measurement] 

Name of the input test_02 Production run that uses the work load 

typical of an iPic3D simulation. Used for 

comparisons with that code and for quick 

performance tests 

Type of benchmark Micro-benchmark Test that can be run in a couple of minutes in 

a single core 

Type of parallel 

efficiency 

Weak scaling   
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Objective Check compute efficiency  

Metrics   

Total runtime Computed as the added time of 

the fields, particles, moment 

gathering and I/O runtimes 

[sec] The estimated total runtime in one core 

for this test: ~ 120 sec = 2 minutes 

Fields runtime  [sec] 

Particles runtime  [sec] 

Moment gathering 

runtime 

 [sec] 

I/O runtime  [sec] 

Additional metrics   

Objective Extracted only for major 

revisions of the code 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performances of the code. 

IPC Instructions per cycle [IPC] Obtained using Extrae/Paraver 

FLOPS Floating points per second [FLOPS] Obtained using Vtune as part of the 

roofline analysis 

Bytes/FLOP Arithmetic intensity [Bytes/FLOP] Obtained using Vtune as part 

of the roofline analysis 

Simulation 

conditions 

  

Type of run iPic3D performance comparison  

Memory use Blocks of size 920KB 

Total memory use 1.3 GB 

Block sizes fit the L2-cache of Intel Skylake 

8180 processor. Please change the number 

of blocks to fit the data in the cache of the 

targe t directory 

Number of cells 16384  

Number of particles 

per cell per species 

100 2 species 

Number of blocks 

per MPI process 

256 Selecting the number of blocks must follow 

the following formula: 

   (C/P)/B*n*s*f*r < cache size 

where: 
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C = Total number of cells 

P = Number of MPI processors 

B = Number of blocks per MPI process 

n = Number of particles per cell 

s = number of species 

f = 9 = number of large particle vectors 

r = size of double in the target architecture 

# of iterations 10  

Numerical method IMM Using Maxwellian particle initialization. 

Drifting plasma with thermal velocity. Field 

solver tolerance of 1e-3 

I/O frequency No I/O  

 

Table 7 shows the benchmark 2 conditions using the input file: test_03. The objective of 

this benchmark is to gather the peak performances of the code under realistic production 

conditions, using large memory loads. The setup is similar to the previous test, but uses 

much more memory (more cells and many more particles per cell). 

Table 7: xPic benchmark 2. 

Parameter Description Observations [unit of measurement] 

Name of the input test_03 Production run that uses the work load 

typical of an xPic simulation. Used for peak 

performance tests 

Type of benchmark Benchmark Test that can be run in the order of hours. 

Not inteded for fast benchmarking 

Type of parallel 

efficiency 

Weak scaling and strong scaling This test can be used to test strong scaling in 

a single node. If the scaling involves 

changing the number of MPI processes, 

please make sure that the cache load is 

performed as suggested bellow 

Objective Check compute efficiency  

Metrics   

Total runtime Computed as the added time of 

the fields, particles, moment 

gathering and I/O runtimes 

[sec] The estimated total runtime in one core 

for this test: ~ 1800 sec = 30 minutes 

Fields runtime  [sec] 

Particles runtime  [sec] 

Moment gathering  [sec] 



D1.2  Application use cases and traces 

41 

DEEP-EST - 754304  28.03.2018 

runtime 

I/O runtime  [sec] 

Additional metrics   

None Do not use external profilers for 

this test 

We do not recommend to gather metrics 

from this run as it would produce extremely 

large files 

Simulation 

conditions 

  

Type of run xPic performance test  

Memory use Blocks of size 200KB 

Total memory use 16 GB 

Block sizes fit the L3-cache of Intel Skylake 

8180 processor. Please change the number 

of blocks to fit the data in the cache of the 

targe t directory 

Number of cells 24576  

Number of particles 

per cell per species 

1000 2 species 

Number of blocks 

per MPI process 

512 Selecting the number of blocks must follow 

the following formula: 

   (C/P)/B*n*s*f*r < cache size 

where: 

C = Total number of cells 

P = Number of MPI processors 

B = Number of blocks per MPI process 

n = Number of particles per cell 

s = number of species 

f = 9 = number of large particle vectors 

r = size of double in the target architecture 

# of iterations 10  

Numerical method IMM Using maxwellian particle initialization. 

Drifting plasma with thermal velocity. Field 

solver tolerance of 1e-3 

I/O frequency No I/O  

 

Table 8 shows the benchmark 3 conditions using the input files: test_04 and test_05. 

These tests contain exactly the same parameters as the previous one, but with a much 

smaller domain, in order to make quick tests under realistic conditions. The number of 

iterations has been extended to present meaningful runtimes including I/O in test_05. 

These benchmarks can be used for quick checks of the code. 
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Please notice that test_05 contains the same features as test_04, but it also includes I/O. 

Table 8: xPic benchmark 3. 

Parameter Description Observations [unit of measurement] 

Name of the input test_04 

test_05 

Production run that imposes a realistic work 

load on the particle solver. Used for peak 

performance tests of the particle solver, 

including the I/O performances 

Type of benchmark Mid-size-benchmark Test that can be run in a few minutes to 15 

minutes 

Type of parallel 

efficiency 

Weak scaling   

Objective Check compute efficiency and 

I/O performance 

 

Metrics   

Total runtime Computed as the added time of 

the fields, particles, moment 

gathering and I/O runtimes 

[sec] The estimated total runtime in one core 

for this test: ~ 180 sec = 3 minutes 

Fields runtime  [sec] 

Particles runtime  [sec] 

Moment gathering 

runtime 

 [sec] 

I/O runtime  [sec] 

Additional metrics   

Objective Extracted only for major 

revisions of the code. 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performances of the code 

IPC Instructions per cycle [IPC] Obtained using Extrae/Paraver 

FLOPS Floating points per second [FLOPS] Obtained using Vtune as part of the 

roofline analysis 

Bytes/FLOP Arithmetic intensity [Bytes/FLOP] Obtained using Vtune as part 

of the roofline analysis 

Simulation 

conditions 
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Type of run Small size production run of xPic 

with realistic workloads 

 

Memory use Blocks of size 7000KB 

Total memory use 0.5 GB 

Block sizes fit the L3-cache of Intel Skylake 

8180 processor. Please change the number 

of blocks to fit the data in the cache of the 

targe t directory 

Number of cells 768  

Number of particles 

per cell per species 

1000 2 species 

Number of blocks 

per MPI process 

16 Selecting the number of blocks must follow 

the following formula: 

   (C/P)/B*n*s*f*r < cache size 

where: 

C = Total number of cells 

P = Number of MPI processors 

B = Number of blocks per MPI process 

n = Number of particles per cell 

s = number of species 

f = 9 = number of large particle vectors 

r = size of double in the target architecture 

# of iterations 51  

Numerical method IMM Using maxwellian particle initialization. 

Drifting plasma with thermal velocity. Field 

solver tolerance of 1e-3 

I/O frequency test_04 has no I/O 

test_05 Writes the field files 

every 10 iterations, and the 

particle files every 25 iterations 

1 particle file and 1 field file are written at 

iteration 0 

A total of 6 field files and 3 particle files are 

written 

Field file size: 343 KB 

Particle file size: 71 MB 

 

Table 9 shows the benchmark 4 conditions using the input files: test_06 and test_07. 

The goal of this micro-benchmark is to test the effects of the block size in the performances 

of the code. For optimal performances, the block data should be as close as possible to the 

CPU. In Intel Skylake processors this means blocks sizes smaller than 256KB to fit in the L2 

cache, or 39424KB to fit in the L3 cache.  

Table 9: xPic benchmark 4. 

Parameter Description Observations [unit of measurement] 
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Name of the input test_06 

test_07 

Files that test the efficiency improvement by 

using good cache sizes 

Type of benchmark Micro-benchmark Test that can be run in a couple of minutes in 

a single core 

Type of parallel 

efficiency 

Weak scaling   

Objective Check compute memory 

management efficiency 

 

Metrics   

Total runtime Computed as the added time of 

the fields, particles, moment 

gathering and I/O runtimes 

[sec] Estimated total runtime in one core for 

this test: ~ 180 sec = 3 minutes 

Fields runtime  [sec] 

Particles runtime  [sec] 

Moment gathering 

runtime 

 [sec] 

I/O runtime  [sec] 

Additional metrics   

Objective Extracted only for major 

revisions of the code 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performance of the code 

IPC Instructions per cycle [IPC] Obtained using Extrae/Paraver 

FLOPS Floating points per second [FLOPS] Obtained using Vtune as part of the 

roofline analysis 

Bytes/FLOP Arithmetic intensity [Bytes/FLOP] Obtained using Vtune as part 

of the roofline analysis 

Simulation 

conditions 

  

Type of run Small size production run of xPic 

with realistic workloads 

 

Memory use Blocks of size: 

* 630 MB (test_06) 

* 1 MB (test_07) 

Total memory use 4 GB 

Block sizes fit the L3-cache of Intel Skylake 

8180 processor. Please change the number 

of blocks to fit the data in the cache of the 

targe t directory 
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Number of cells 7680  

Number of particles 

per cell per species 

1000 2 species 

Number of blocks 

per MPI process 

2 (test_06) 

64 (test_07) 

Selecting the number of blocks must follow 

the following formula: 

   (C/P)/B*n*s*f*r < cache size 

where: 

C = Total number of cells 

P = Number of MPI processors 

B = Number of blocks per MPI process 

n = Number of particles per cell 

s = number of species 

f = 9 = number of large particle vectors 

r = size of double in the target architecture 

# of iterations 10  

Numerical method IMM Using Maxwellian particle initialization. 

Drifting plasma with thermal velocity. Field 

solver tolerance of 1e-3 

I/O frequency None This benchmark does not test I/O 

5.2 DLMOS 

The second application from KU Leuven is the DLMOS suite. By the end of the project, the 

DLMOS suite will be a Python package that includes all the models developed by KU Leuven 

for the modelling of the solar wind using deep learning algorithms. In the meantime, we have 

designed a test suite that will benchmark multiple features of the DEEP-EST system, 

including the performance of Python packages, TensorFlow efficiency and I/O efficiency. 

In Table 10, we have detailed the conditions for the baseline benchmark 1. This test runs a 

Multi-Layer Perceptron (MLP) fully written in Python using only NumPy and Pandas and that 

will allow testing the performance of the Python environment without any additional deep 

learning framework. 
Table 10: DLMOS benchmark 1. 

Parameter Description Observations 

Name of the 

function 

dlmos.dstmlp(‘test’) Multi-Layer Perceptron written without a ML 

framework. Uses numpy and pandas 

Type of benchmark Mid-size-benchmark Test that can be run in a few minutes to 15 

minutes 

Type of parallel 

efficiency 

Strong and weak scaling Uses data parallelism, distributing batches of 

data in different processors 
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Objective Check python pure performance 

Check Data loading times 

 

Metrics   

Total runtime In seconds. Computed as the 

addition of the preprocessing, 

training and I/O run-times 

Estimated total runtime in one core for this 

test: ~ 2 to 5 minutes 

Preprocessing 

runtime 

In seconds  

Training runtime In seconds  

I/O runtime In seconds  

Data throughput In bytes/sec Total input data size in bytes divided by the 

processing runtime 

Time to 

convergence 

In seconds Time that the script takes to reach the value 

of 0.8 in the R
2
 metric 

Additional metrics   

Objective Extracted only for major revisions 

of the code 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performances of the code. 

FLOPS Floating points per second Obtained using VTune as part of the roof-line 

analysis 

Bytes/FLOP Arithmetic intensity Obtained using VTune as part of the roof-line 

analysis 

Simulation 

conditions 

  

Type of run Regression problem. Small size 

Multi-Layer Perceptron that 

forecasts the Dst geomagnetic 

index from solar wind information 

 

Memory use 280 MB When all input data is loaded in memory 

Number of inputs 52000 Estimated number of inputs after data 

preprocessing 

Number of nodes in 

the input layer 

40  

Number of layers 3 Including the output layer 
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Nodes per layer 20 x 10 x 1 Including the output layer 

Number of epochs 200  

I/O Size of the data sets: 16 MB 

Size of the NN weights: 13 KB 

 

The “dstmlp” case uses data from OMNIWeb containing information about the solar wind 

conditions at 1 AU, and geomagnetic indexes on the surface of the Earth. The DLMOS 

model forecasts the geomagnetic index Dst from measurements of the conditions of the solar 

wind. The data must be first read from a file (or downloaded from the Internet), pre-

processed and organised. Then the model trains a basic multilayer neural network that has 

only one output value. 

The second benchmark presented in Table 11 has the exact same parameters as the 

previous benchmark, but uses two deep learning frameworks: TensorFlow (tf) and Keras (kr). 

The I/O conditions are kept the same in each case. This benchmark allows comparing the 

performance of the frameworks relative to the base run of benchmark 1. 
Table 11: DLMOS benchmark 2. 

Parameter Description Observations 

Name of the 

function 

dlmos.dsttf(‘test’) 

dlmos.dstkr(‘test’) 

Multi-Layer Perceptron written without a ML 

framework. Uses numpy and pandas 

Type of benchmark Mid-size-benchmark Test that can be run in a few minutes to 15 

minutes 

Type of parallel 

efficiency 

Strong and Weak scaling Uses data parallelism, distributing batches of 

data in different processors 

Objective Check TensorFlow/Keras 

performance. Check data 

throughput times 

 

Metrics   

Total runtime In seconds. Computed as the 

addition of the preprocessing, 

training and I/O run-times 

Estimated total runtime in one core for this 

test: ~ 2 minutes 

Preprocessing 

runtime 

In seconds  

Training runtime In seconds  

I/O runtime In seconds  

Data throughput In bytes/sec Total input data size in bytes divided by the 

processing runtime 

Time to In seconds Time that the script takes to reach the value 
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convergence of 0.8 in the R
2
 metric 

Additional metrics   

Objective Extracted only for major revisions 

of the code 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performances of the code. 

FLOPS Floating points per second Obtained using VTune as part of the roof-line 

analysis 

Bytes/FLOP Arithmetic intensity Obtained using VTune as part of the roof-line 

analysis 

Simulation 

conditions 

  

Type of run Regression problem. Small size 

Multi-Layer Perceptron that 

forecasts the Dst geomagnetic 

index from solar wind information 

 

Memory use 280 MB When all input data is loaded in memory. 

(Calculated using memory_profiler) 

Number of inputs 52000 Estimated number of inputs after data 

preprocessing 

Number of nodes in 

the input layer 

40  

Number of layers 3 Including the output layer 

Nodes per layer 20 x 10 x 1 Including the output layer 

Number of epochs 200  

I/O Size of the data sets: 16 MB 

Size of the NN weights: 13 KB 

 

Table 12 below shows the conditions for benchmark 3. This benchmark is the same as 

benchmark 1 (using only Python, Pandas and NumPy) but uses many more input nodes and 

more hidden layers. The input/output raw data is also the same, but here we use a large 

number of historic points to make the forecasting prediction. The preprocessing generates a 

much larger input set. This emulates the workload of a larger neural network, with a much 

bigger weights matrix. 
Table 12: DLMOS benchmark 3. 

Parameter Description Observations 

Name of the dlmos.dstmlp(‘bigtest’) Multi-Layer Perceptron written without a ML 
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function framework. Uses numpy and pandas 

Type of benchmark Mid-size-benchmark Test that can be run in a few minutes to 15 

minutes 

Type of parallel 

efficiency 

Strong scaling Uses data parallelism, distributing batches of 

data in different processors 

Objective Check python pure performance. 

Check Data loading times 

 

Metrics   

Total runtime In seconds. Computed as the 

addition of the preprocessing, 

training and I/O run-times 

Estimated total runtime in one core for this 

test: ~ 4 minutes 

Preprocessing 

runtime 

In seconds  

Training runtime In seconds  

I/O runtime In seconds  

Data throughput In bytes/sec Total input data size in bytes divided by the 

processing runtime 

Time to 

convergence 

In seconds Time that the script takes to reach the value 

of 0.8 in the R
2
 metric 

Additional metrics   

Objective Extracted only for major revisions 

of the code. 

These metrics are not gathered continuously. 

They are obtained each time a deliverable is 

due, to show more details on the 

performances of the code. 

FLOPS Floating points per second Obtained using VTune as part of the roof-line 

analysis 

Bytes/FLOP Arithmetic intensity Obtained using VTune as part of the roof-line 

analysis 

Simulation 

conditions 

  

Type of run Regression problem. Small size 

Multi-Layer Perceptron that 

forecasts the Dst geomagnetic 

index from solar wind information 

 

Memory use 600 MB When all input data is loaded in memory 
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Number of inputs 52000 Approximate number of inputs after data 

preprocessing 

Number of nodes in 

the input layer 

192 8 features x 24 historical values 

Number of layers 5 Including the output layer 

Nodes per layer 100 x 40 x 20 x 10 x 1 Including the output layer 

Number of epochs 2005  

I/O Size of the data sets: 80 MB 

Size of the NN weights: 194 KB 

 

Table 13 shows the setup for the large benchmark case 4. This will be used to test CNN 

script under more operational conditions. This benchmark performs a CNN training using 

images from the SDO satellite as input, and data from the OMNIWeb database. The image 

resolution used here is only 512x512, but it helps to test the data retrial and loading 

procedures. 
Table 13: DLMOS benchmark 4. 

Parameter Description Observations 

Name of the 

function 

dlmos.swtf(‘test’) Simple CNN that uses SDO data to forecast 

solar wind speed at 1AU 

Type of benchmark Benchmark Test that can be run in the order of hours. 

Type of parallel 

efficiency 

Strong scaling Uses data parallelism, distributing batches of 

data in different processors 

Objective Check CNN performance in 

TensorFlow. Check Data loading 

times. Check memory 

performance 

 

Metrics   

Total runtime In seconds. Computed as the 

addition of the preprocessing, 

training and I/O run-times 

Estimated total runtime in one core for this 

test. Currently unknown. Estimated: 30-60 

minutes 

Preprocessing 

runtime 

In seconds  

Training runtime In seconds  

I/O runtime In seconds  

Data throughput In bytes/sec Total input data size in bytes divided by the 

processing runtime 
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Additional metrics   

None   

Simulation 

conditions 

  

Type of run Deep CNN with multiple images 

as input and one value, solar 

wind speed, as output 

 

Memory use ~ 3 GB With input/output data loaded in batches of 

16 

Number of inputs 260 000 One year of data. Images taken every 2 

minutes 

Number of nodes in 

the input layer 

7.8 million Image size: 512 x 512 pixels. 30 channels 

per input. Batches of size 16 inputs 

Number of layers 3 convolutional, and 2 fully 

connected 

Including the output layer. Dropout, down-

sampling, flattening functions are not 

included 

Number of 

channels or nodes 

per layer 

8, 12, 24 (channels) + 

128, 8 (nodes) 

Channels for the convolutional layers and 

nodes for the fully connected nodes, 

including the output layer 

Number of epochs 1 We use batch training for this case with only 

one passage through all the inputs 

I/O Size of the data sets:  600 GB 

Size of the NN weights:  600 KB 

 

This full operational benchmark case is also used to test some of the features of TensorFlow 

and/or Keras used for CNN computation. It will also test the scripts for data movement and 

will stress the system memory. 

Some of the parameters of this benchmark may be adjusted in the following deliverables, as 

the script is not yet available and will require adaptations to the selected architecture (in 

particular disk and memory space). If disk conditions do not allow performing the benchmark, 

we will first reduce the total number of inputs by half and double the number of epochs, until 

the disk can be used. If the limitation comes from memory constraints, we will reduce the 

number of channels in the input layer. Any modifications to the conditions presented in Table 

13 will be reported.  
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6 Task 1.6: Data analytics in Earth Science (UoI) 

The University of Iceland´s contribution consists of data analytics within the realm of Earth 

sciences, with three machine learning applications demonstrating different approaches within 

the field, effectively covering a wide range of the techniques employed in contemporary 

machine learning, namely: 

 Clustering using HPDBSCAN (6.1). 

 Support vector machines with PiSvM (6.2). 

 Deep learning with TensorFlow and the Keras extension (6.3). 

6.1 HPDBSCAN 

HPDBSCAN is a highly parallel implementation of the established DBSCAN clustering 

algorithm. It takes points of an arbitrary dimension as one of its input argument and labels 

each point either as part of a cluster ID or identifies it as noise. The DBSCAN algorithm 

determines this through the use of input parameters: the minimal number of points required 

to form a cluster and the maximum neighbourhood search radius. HPDBSCAN has been 

developed by researchers from the University of Iceland and the Jülich Supercomputing 

Centre. 

6.1.1 Implementation 

The HPDBSCAN implementation is written in C++ and is optimised for high parallelism, using 

both shared and distributed memory parallelism via OpenMP and MPI respectively. Further 

parallelism is also employed by exploiting the HDF5 API when the input data is read and the 

output data is written. The application scales well and is able to practically operate on any 

number of nodes, cores and threads. 

The source code is split into two folders, jsc_mpi, which contains the hybrid MPI/OpenMP 

code relevant to our use-case and the DEEP-EST project, and also jsc_openmp, a OpenMP-

only variant without HDF5 outside the scope of the project. 

The application can be compiled by using the Makefile with the deep option, i.e. “make deep” 

in the jsc_mpi folder. More information is available in the Readme file located in the 

application´s Gitlab repository21 .  

6.1.2 Binary 

HPDBSCAN’s executable, dbscan, has three required input parameters: 

 minpoints, the minimum amount of points required to form a cluster, 

 epsilon, the maximum neighbourhood search radius for each point, 

 filename, a file reference to the input dataset. 

Note that simply executing the binary without parameters will display concise information on 

all of the input parameters that are possible (but are not needed). Finding the parameter 

values that give the best clustering results for a given dataset can be a time-consuming 

process because they do depend on the dataset itself and are application specific. 

                                                
21

  https://gitlab.version.fz-juelich.de/DEEP-EST/UoI-HPDBSCAN  

https://gitlab.version.fz-juelich.de/DEEP-EST/UoI-HPDBSCAN
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6.1.3 I/O 

Input files for HPDBSCAN must adhere to the HDF5 format. The HDF5 API is used by each 

MPI process to access the input data in parallel, where the data is divided into equally sized 

chunks corresponding to the number of MPI processes, thus enabling each MPI process to 

read just the chunk it is going to process. The application labels each point to a cluster ID 

and writes the labels for each point into the input file near the end of its execution. 

Additionally, the application writes the execution time of each part of the application and its 

status to the standard output, as can be seen in the image below. Note that the input 

parameters have been approximated to give a good “clusters” vs. “noise points” ratio, i.e. it is 

desirable to keep the noise at a minimum without giving up too much cluster granularity. 

 
Figure 6: HPDBSCAN´s standard output, using the Bremen dataset running on the SDV partition with 128 
cores. Intermediary time-measurements are provided for each relevant part of the application, as well as 
the whole execution. 

6.1.4 Input datasets 

HPDBSCAN has been used to perform clustering on numerous datasets, including ‘Inner city 

of Bremen’: a digital 3D cartography of the city of Bremen, Germany, using point-clouds 

generated with 3D laser scans. This dataset demonstrates how HPDBSCAN can be used to 

identify real-world structures in three dimensions, see Figure 7 and Figure 8. 

The “Inner city of Bremen” dataset (including a smaller, sub-sampled dataset) is available 

online22. Note that the online dataset link contains another dataset with a collection of 2D 

Twitter geo-tags in the United Kingdom. However, that dataset was deemed unsuitable for 

the DEEP-EST project due to the low number of dimensions and detail. 

Using a minpoint input value of 20 and an epsilon value of 30 gives an adequate result for 

the Bremen dataset, i.e. a good number of clusters with little noise. 

As the DEEP-EST project progresses, we will eventually need even larger datasets to fully 

take advantage of the new and better performing hardware. For this, we have several 

promising prospects such as the LiDAR point-cloud AHN (Actueel Hoogtemodel Nederland) 

dataset of the whole Netherlands, collected and maintained by the Dutch government. A 

collaboration with TU Delft in this context has been started.  

 

                                                
22

 https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e  

https://b2share.eudat.eu/records/7f0c22ba9a5a44ca83cdf4fb304ce44e
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Figure 7: Visualisation of the input data for the Inner city of Bremen dataset. Colours represent 
temperature values where blue is cold and red is warm (temperature is ignored for clustering). 

 
Figure 8: A visualisation of the generated output (using a different perspective); each colour represents a 
single cluster. 

6.1.5 Proposed benchmarks on DEEP system 

If we assume that HPDBSCAN is executed with reasonable input parameters, i.e. 

parameters that produce suitable clusters with excluding outliers as noise, the most 

important benchmarking metric is the total execution time. Other important metrics are how 

well the application scales strongly and weakly. We therefore propose benchmarking the 

application with two datasets and according different hardware configurations. 

For the first benchmark we investigate weak scaling, i.e. how well it scales when you 

increase the problem size. For this we use the sub-sampled Bremen dataset on a low 

number of cores to obtain a “yard-stick” time measurement which can be compared against 

the same measurement made using the full dataset. One possible hardware configuration on 

the DEEP-EST system would be to select the SDV partition with two nodes and two threads 

per process, using the sub-sampled Bremen dataset. This is then followed with using the full 

Bremen dataset, which is approximately 32 times larger than its sub-sampled counterpart 

and should therefore use 32 times the amount of cores, e.g. 8 nodes, 8 MPI processes, and 

16 threads per process. 
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For the second benchmark we investigate strong scaling, i.e. how it scales with a varying 

number hardware resources using a fixed problem size. This can for example be realised on 

the DEEP-EST by executing the application on the SDV partition with an exponentially 

growing number of cores. 

All sample DEEP-EST micro-benchmarks JUBE scripts are available in the application´s 

Gitlab repository. 

6.2 piSVM 

PiSvM is a parallel support vector machine (SVM) implementation which we use to classify 

hyper-spectral data of natural and man-made land covers via supervised learning. First, the 

input data is pre-processed with feature engineering before the trained models are produced 

using different kernels or datasets, performing cross-validation when necessary. Finally, the 

models' classification accuracies and error-rates are determined by performing predictions on 

a separate dataset. 

6.2.1 Implementation 

The PiSvM implementation is written in C++ and uses MPI for distributed memory 

parallelism. It is not a highly optimised implementation with observable performance 

bottlenecks in both its MPI collective communication pattern and I/O routines. Furthermore, 

PiSvM does not use shared memory parallelism such as OpenMP, and thus only relies on 

MPI. However, it is able to operate with an arbitrary number of processes. While PiSvM is the 

best known parallel SVM implementation, it needs to be optimised as part of DEEP-EST and 

will thus serve as an example how to make a non-optimised application ready for the DEEP-

EST hardware. 

PiSvM currently requires a C/C++ compiler and MPI. In the future, the application will also 

need a HDF5 module capable of parallel I/O. It is possible to compile and run all PiSvM 

executables with the default modules. 

The source code23 can be built by simply executing the Makefile, via the make command, in 

the project’s source folder, which will produce three binary executables. 

6.2.2 Binary 

The three executable binaries of PiSvM are: 

1. pisvm-train to train the model, 

2. pisvm-predict for inference, 

3. pisvm-scale which is outside the scope of this document. 

As it can be seen in Figure 9, there are numerous options which can be set when running the 

pisvm-train executable: 

srun pisvm-train -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 

0 $TRAINDATA 

The prediction executable, pisvm-predict, however, only requires the model file generated by 

training and a test dataset which is mutually exclusive to the training dataset, i.e. 

                                                
23

 https://gitlab.version.fz-juelich.de/DEEP-EST/UoI-piSVM 

https://gitlab.version.fz-juelich.de/DEEP-EST/UoI-piSVM
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srun pisvm-predict $TESTDATA $MODELDATA $RESULTS 

 
Figure 9: Command line options available when running the svm-train executable. 

6.2.3 I/O 

Currently, the input datasets for PiSvM are simple text files with space-separated values. 

PiSvM’s input-output procedures are not optimised, allowing future work for improvement. In 

particular, an updated version is planned with improved I/O that enables parallel input data 

processing by every MPI process, using the HDF5 API and MPI parallel I/O. 

The I/O procedure can be described in two steps, in the correct order: 

1. Training uses the optimised Indian Pines dataset (see Section 6.2.4) as input and 

generates a model file with the trained model. Verbose information relevant to a data-

scientist using the application is streamed to the standard output.  

2. Prediction uses the model file generated in step 1 above and another larger test 

dataset for inference. A simple text file is generated with the predicted labels for each 

respective test sample and the models accuracy is streamed to the standard output. 

 
Figure 10: Successful classification evaluation output obtained with pisvm-predict based on the partial 
example of the output produced by the training phase. 

6.2.4 Input dataset 

Our use case processes the "Indian Pines" dataset24 gathered by the AVIRIS sensor on 

board of an aircraft over a test site in North-western Indiana in the US. It is made up of 

                                                
24

 https://b2share.eudat.eu/records/8d1fbbba69944fc5a5ae01d1c141c37a  

https://b2share.eudat.eu/records/8d1fbbba69944fc5a5ae01d1c141c37a
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145x145 pixels and 224 spectral reflectance bands of labelled data. It mostly consists of 

agriculture although it also includes forests, roads and some large structures. 

 
Figure 11: Visualisation of the Indian Pines dataset with the hyper-spectral layers on the left side, and its 
categorisation (labelling) on the right. 

Note that the link contains two versions of the dataset, an unmodified raw dataset and its 

optimised version which has undergone feature engineering in order to reduce the number of 

features and ensure convergence during training. 

The Indian Pines dataset is of medium size which is not large enough to put a considerable 

strain on the DEEP-EST hardware, therefore new, larger datasets are currently being 

investigated to give the opportunity to make use of the full power of the future DEEP-EST 

hardware. These datasets include several high-resolution national LiDAR datasets 

compromising mostly of terrain, one such example being the national LiDAR dataset of the 

Netherlands maintained by the Dutch government. 

6.2.5 Proposed benchmarks on the DEEP system 

The most important metrics to be measured on the DEEP system is the execution time of the 

training and prediction phase, respectively, and the measured accuracy of a trained model 

that is reported after the prediction has finished its execution. Previous tracing and profiling 

has revealed that the application’s load-balancing is sensitive to hyper-threading; therefore, 

we recommend not using it.  

For the training, we recommend the processed Indian Pines training dataset, which is pre-

processed in order to ensure convergence and speed-up the execution by reducing the 

number of features. The number of cores and benchmarks should be selected as to measure 

how well the application scales strongly, i.e. benchmark with an increasing number of cores 

while the problem size remains fixed. 

For the prediction, we recommend using the same number of cores as in the training phase 

above to be able to directly compare the execution times of these two phases and how 

strongly they scale. For inference the Indian Pines test dataset is used, which is significantly 

larger than the training dataset. 
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Note that sample JUBE scripts for the requested DEEP-EST micro-benchmarks are available 

in the application´s Gitlab repository. 

6.2.6 Future Improvements 

There are several scheduled improvements to the current PiSvM implementation that will be 

explored throughout the lifespan of the DEEP-EST project: 

 The standard serialised I/O routines will be replaced with parallel HDF5 API calls, 

which let MPI processes to access the input dataset concurrently. 

 The training phase will be improved through the use of cascade support vector 

machines, which offers a significant speed-up of training time. 

 Tracing and profiling via Extrae and Paraver has revealed several performance 

bottlenecks which can be significantly improved with a smarter implementation of 

distributed memory parallelism. 

DEEP-EST modules will be used to speed-up the application´s execution, and improve its 

workflow, by using the Network Access Memory (NAM) module as a storage target, the 

Global Collective Engine (GCE) to enhance MPI collective operations, and the Booster 

module for inference. 

6.3 Deep learning with TensorFlow and Keras extension 

TensorFlow is an open-source deep learning framework that is used to create traditional 

Artificial Neural Networks (ANN) and more recent deep learning networks (e.g. Long-Short 

Term Memory or Convolutional Neural Networks (CNN)) for all kinds of applications. The 

core of TensorFlow is implemented in C++ but it offers several APIs on top of the core, with 

Python being the most popular variant. It is common to run TensorFlow on accelerators such 

as GPUs due to the intrinsic parallelisation possibilities. 

Keras is a user-friendly TensorFlow extension library that allows using high-level Python 

code to create machine learning applications, based on TensorFlow, using a layer-wise 

approach and an easy way to add/remove regularisation methods (e.g. weight decay, etc.). 

We use the same machine learning application as described in Section 6.2 (except we add 6 

more classes compared to the original SVM problem because that 6 classes had too little 

samples for PiSvM to learn them), i.e. the classification of hyper-spectral data of natural and 

man-made land covers via supervised learning. However, instead of a support vector 

machine (SVM), we use a deep 3D convolutional neural network (3DCNN). While the spatial 

resolution is 2D, the hyper-spectral dimension of the data adds a further dimension, thus 

requiring a 3D convolutional neural network for an effective classification. Using a deep 

neural network has the advantage of enabling the use of the unmodified raw dataset as 

input, instead of requiring the use of a pre-processed, feature engineered dataset as above. 

6.3.1 Implementation 

The current implementation of our application uses TensorFlow/Keras and runs most 

efficiently on GPUs. To make the most of the Intel CPUs offered by the DEEP/DEEP-ER 

SDV, we tried to make use of the speed-up provided by the Intel Math Kernel Library (MKL) 

to exploit acceleration offered by Intel CPUs. Unfortunately, the 3D convolution used by our 
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application is not supported by Intel MKL25 yet. While we were just finalising this deliverable, 

the Intel Math Kernel Library for Deep Neural Networks MKL-DNN started to support Intel 

AVX-512-accelerated 3D convolution26. That library was not available on time but 

improvements on using this library are expected to appear in the next coming weeks. 

Another interesting path in the implementation would be the use of specialised Neural 

Network accelerator hardware such as the Intel Nervana Neural Network Processor (NNP) 

as outlined in the Deliverable D3.1 - System Architecture. 

 

In order to start with a bottom-up approach, we use the GPU-centric JURON cluster at Jülich 

Supercomputing Centre (JSC) as a realistic reference platform for the time being while 

considering other options in the near future. Once acceleration on other hardware is 

available on the future DEEP-EST MSA platform, we will investigate the acceleration offered 

by that new hardware (and the accompanying accelerated software library) for our deep 

neural network application. The deep learning application for classification of remote sensing 

data makes use of Keras as library on top of TensorFlow, i.e. the application itself is 

implemented in Python but runs as CUDA code using multiple GPUs in parallel on the same 

node, but currently not on multiple nodes (which would require MPI communication between 

the different nodes that are equipped with GPUs OpenMPI). 

The performance analysis of GPU applications is still a matter of active research and thus 

using the Extrae tool to create traces of our GPU executions is not possible: Extrae supports 

only tracing GPU applications that make use of the CUDA runtime API, but TensorFlow uses 

the low-level CUDA driver API. 

After having loaded the needed modules (module load) and Python modules (pip 

install), the Python interpreter can be used to run the Keras code of the application. 

6.3.2 I/O 

The raw input dataset is pre-processed to fit the needs of the deep learning application, i.e. 

out of the original text based file format, several HDF5 files are produced to enable fast I/O 

via the h5py Python module. This includes: 

 The training samples and their corresponding labels, 

 The test samples and their corresponding labels, 

 The 2D pixel coordinate of every sample, 

 Statistical information, i.e. dataset standard deviation and mean. 

 

The training/testing datasets are created with a randomized 90/10 % split of the raw dataset. 

 

Similarly, the output model file is written in the HDF5 format, containing the weights of all of 

the directed edges in the deep neural network. Additional output is written to text files with 

information on the neural network´s setup and also internal information that facilitates 

debugging when necessary. Additionally, the application takes advantage of the check-

pointing mechanism (hooks) offered by TensorFlow. 

                                                
25

 https://github.com/tensorflow/tensorflow/issues/11802  
26

 https://github.com/intel/mkl-dnn/commit/1a4d45d90a3889a08a857d5896f61e23be5a50b4 

https://github.com/tensorflow/tensorflow/issues/11802
https://github.com/intel/mkl-dnn/commit/1a4d45d90a3889a08a857d5896f61e23be5a50b4
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6.3.3 Input datasets 

We use the same dataset as described in Section 6.2.4, i.e. the "Indian Pines" dataset27 

made up of 1417x614 pixels and 224 spectral reflectance bands of labelled data except 6 

more classes that have been removed in the dataset used with PiSvM in section 6.2. It 

mostly consists of agriculture although it also includes forests, roads and some large 

structures. Due to the deep learning approach, we use from that dataset the unmodified raw, 

non-feature engineered data and the whole set of classes. 

 

As the deep neural network-based classification is more compute intensive then SVM-based 

classification, this data is probably big enough for the final DEEP-EST MSA platform, but we 

will nonetheless also explore larger datasets, i.e. the same datasets as we´ll be using for the 

SVM-based classification described in Section 6.2.4. This also opens new possibilities of 

investigating the scalability of the deep learning application. In particular, it is planned to use 

time series classification of remote sensing data (e.g. change of land cover over time vs. 

single image classification) that adds another complexity to the application problem. This will 

be with a temporal resolution of 5 days with data sizes from 23 TB / day28 recorded since 

June 2015. 

6.3.4 Proposed Benchmarks on the DEEP system 

We use the same benchmarks as those in Section 6.2, i.e. the execution time of the training 

and prediction phase, respectively, and the measured accuracy of a trained model that is 

reported after the prediction has finished its execution. As described in Section 6.3.1, we are 

not using the DEEP system for this deliverable, but rather the JURON GPU cluster as it is 

the most efficient system that we have access to for our application. 

 Execution time: The benchmark of our application on JURON makes use of a single 

node equipped with four NVIDIA TESLA P100 GPUs optimised for HPC: the 

connection between the GPUs and to the host CPU is via NVLink interconnects 

(NVLink offers a 160 GB/s bandwidth in comparison to 32 GB/s offered by PCIe x16).  

The benchmark results are as follows (training and test data obtained from the Indian 

pines data set by dividing it in a random way using a 90% / 10% split): 

o Training time: 2 hours, 5 minutes and 39 seconds, 

o Testing time: 16 minutes and 57 seconds. 

 Accuracy: The nice property of deep learning is that it learns properties of the 

features from the raw data. Hence, our deep learning application can work on the raw 

data, but still achieves an accuracy that is comparable to applying SVMs on the pre-

processed, feature-engineered data set. Apart from the speed-up of training the 

networks, the intrinsic feature engineering thus significantly reduces time of scientists 

to perform manual feature engineering. 

In the near future, we will use the most suitable neural network accelerator technology 

available in the DEEP-EST MSA. Examples include GPUs with dedicated tensor cores or 

even specialised neural network hardware accelerators. 

                                                
27

 https://b2share.eudat.eu/records/8d1fbbba69944fc5a5ae01d1c141c37a  

28
 https://sentinel.esa.int/web/sentinel/missions/sentinel-2  

 

https://b2share.eudat.eu/records/8d1fbbba69944fc5a5ae01d1c141c37a
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
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6.3.5 Future improvements 

We foresee the following future changes to improve the performance of our deep learning 

application: 

 Making our deep learning application runnable on the future DEEP-EST MSA 

hardware platform whether this offers CPU-based acceleration, GPU-based 

acceleration, or specialised Neural Network accelerator hardware such as the Intel 

Nervana Neural Network Processor (NNP). 

 Currently, only a single GPU node (with 4 GPUs) is used. Whatever accelerator 

technology is used in the future DEEP-EST MSA, using MPI will enable further 

parallelisation across nodes. 
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7 Task 1.7: High Energy Physics (CERN) 

7.1 Application description 

The CMS Experiment is one of the four large experiments at the Large Hadron Collider. The 

enormous amounts of collision data recorded need to be processed and analysed as 

efficiently as possible. Optimisation of the throughput is of utter importance for the 

experiment as it allows to utilize vast compute resources better and to probe new physics in 

a shorter amount of time. 

The overall collection of software used by the CMS Experiment for data analysis, referred to 

as CMSSW, is built around a Framework, an Event Data Model (EDM), and Services needed 

by the simulation, calibration and alignment, and reconstruction modules that process event 

data so that physicists can perform analysis. The primary goal of the Framework and EDM is 

to facilitate the development and deployment of reconstruction and analysis software.  

The CMSSW event processing model consists of one executable, called cmsRun, and many 

plug-in modules which are managed by the Framework. All the code needed in the event 

processing (calibration, reconstruction algorithms, etc.) is contained in the modules. The 

same executable is used for both detector and simulation data.  

The CMSSW executable, cmsRun, is configured at run time by the user's job-specific 

configuration file. This file tells cmsRun: 

 which data to use, 

 which modules to execute, 

 which parameter settings to use for each module, 

 what is the order of the execution of modules, called path, 

 how the events are filtered within each path, and 

 how the paths are connected to the output files. 

The CMS Event Data Model (EDM) is centred around the concept of an Event. An Event is a 

C++ object container for all raw and reconstructed data related to a particular collision. 

During processing, data are passed from one module to the next via the Event, and are 

accessed only through the Event. All objects in the Event may be individually or collectively 

stored in ROOT files, and are thus directly browsable in ROOT. This allows tests to be run on 

individual modules in isolation. Auxiliary information needed to process an Event is called 

Event Setup, and is accessed via the Event Setup object. 

One of the main building blocks of CMSSW and HEP Data Analysis is the ROOT framework. 

ROOT is a platform for big data analytics, which provides primitives for serialization, storage, 

histogramming, drawing and graphics functionality. ROOT framework is written entirely in 

C++ and has Python bindings for more flexible user interface. 

7.2 Physics description 

The main idea behind any High Energy Physics (HEP) data analysis is the process of 

comparing and testing of the recorded collision events (real data) against some known 

physics models (simulation) that describe the interactions of elementary particles (e.g. the 

Standard Model of Physics). The purpose is to establish (or exclude) the validity of a 

particular model by comparing distributions of various reconstructed physics 

quantities/observables.  
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Both, data and simulation, have almost identical sequences of steps to arrive at a point of 

comparison. However, where real collision events are recorded and are directly available for 

reconstruction, simulated events have to be generated and passed through a very detailed 

simulation of the detector geometry first. It is worth mentioning that once event generation 

and simulation steps are completed, the reconstruction sequences that run on previously 

generated events involve the same algorithms (with different conditions) employed in the 

reconstruction of recorded collision events. The CMSSW workflows are: 

 GEN. GEN is the workflow that involves the generation of various elementary particle 

interactions and simulation of the proton-proton collision environment. This is the very 

first step of any simulation chain. The output of GEN consists of EDM events (with 

generator level products). 

 SIM. SIM is the workflow that involves simulation of detector and electronics 

response. Generator level products produced in the previous step (GEN) are passed 

through simulated detector geometry components and the induced detector response 

is simulated. Various electronics effects are approximated as well. This step is trying 

to simulate the response of the detector given the collision environment modelled by 

the physics included in the GEN step. 

 RAW2DIGI. RAW2DIGI is the workflow responsible for unpacking/converting RAW 

data representation into a more friendly analysis form. Within the CMS experiment, 

DIGI is a nomenclature for the digitized products, collections of electronics outputs 

(charge) for all of the detector regions. 

 RECO. RECO is the workflow with a collection of algorithms that reconstruct the 

physical content of the event. Physicists performing analysis would like to manipulate 

high level familiar objects such as muons, electrons, photons, jets, etc. This 

dramatically simplifies the process of data analysis by abstracting away the details of 

various detector components and concentrating on the actual physics of interest.  

There is quite a large variety of algorithms employed in this step: from simple regression 

procedures to complex clusterisation and pattern recognition techniques. Therefore, with the 

increased complexity of HL LHC collision events, the percentage of time spent on 

reconstruction will become larger than the one spent on the GEN-SIM step, which has 

traditionally been more time consuming. 

7.3 Application infrastructure and configuration 

This is the current infrastructure: 

 CMSSW. The CMS Experiment software framework, CMSSW, is a software 

distribution of a substantial size with multiple internal components and various 

external dependencies. For example, for the purpose of I/O (Input/Output) CMS 

utilizes ROOT data analysis framework and for detector modelling and response 

simulation the GEANT toolkit is currently used. 

 CernVM-FS. In order to facilitate the distribution of the software stack, CMS 

Experiment uses CernVM-FS, a service which simplifies the distribution of software 

components. CernVM-FS assists LHC experiments and collaborations in deploying 

their applications across the world-wide computing infrastructure. CERNVM-FS 

usually contains prebuilt binary distributions together with the source code itself 

(mainly for x86_64 architecture, but there are also ARM and Power PC binary 

releases). Since it is foreseen that a given source code needs to be recompiled either 
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for different architectures or with different optimisation flags, a given release can be 

checked out into some local area and rebuilt. 

 Squid. For the purpose of storing information about experiment conditions and meta-

data about a recorded or simulated event (e.g. various detector calibrations, weights 

to be used for inference, detector channels that are not working for a given time 

period), CMS employs an ORACLE database, which is physically located on the 

servers at CERN. However, due to the fact that the actual data processing happens 

on the distributed world-wide infrastructure and fetching conditions metadata 

substantially increases the startup time of the application, a frontier distributed 

database caching system is used. It is mainly based on the Squid caching service 

and allows reducing substantially the startup time of the application, which is critical 

for successful profiling of a given configuration. 

 File system. Another important point to clarify is the I/O (Input/Output) and data 

locality. For the purpose of simplifying the benchmarking and profiling, input data files 

will be located locally on the cluster, either on General Parallel File System (GPFS) or 

on BeeGFS file system. It is also worth noting that CMSSW is equipped with a 

capability of reading across the network via the XRootD protocol. However, this will 

not be used in order to facilitate the setup. 

 Parallelisation. Given that CMSSW is a multithreading application, but not a 

multiprocessing one, there is no MPI communication among the cmsRun processes 

(the application is embarrassingly parallel). The configuration that is currently being 

used by the CMS experiment is to run with eight threads per single cmsRun process. 

7.4 Benchmarking metrics 

Throughput is the benchmarking metric. The majority of the High Energy Physics (HEP) 

analyses require a large number of collision events to be simulated and/or processed in 

order to be able to perform proper statistical analysis. Various hypothesis testing techniques 

usually require substantial amount of statistics to be accumulated so the results of such tests 

can be properly interpreted. We define the throughput to be the number of simulated and/or 

processed collision events per unit of time (e.g. second). Optimisation and thorough profiling 

of this metric is of ultimate importance, especially in the view of the High Luminosity LHC (the 

upgrade of the LHC is foreseen to start in 2024 and will have a factor 2.5 in peak 

instantaneous luminosity together with the increased High Level Trigger rates), where the 

collision environment is going to explode algorithm runtime on current infrastructure. 

7.5 Benchmarking configuration 

A set of well-defined workflows has been selected that follow as much as possible the 

standard CMS data processing pipelines. Both event generation with simulation and 

reconstruction will be benchmarked, however the emphasis will be on the reconstruction 

algorithms. For the simulation workflows, no input data files are required as collision events 

will be simulated along the way. 

The choice of the datasets selected for benchmarking is dictated by the knowledge of the 

physics present in these events and the relation of these datasets to each other. For 

example, for the reconstruction of simulated events, we know that TTBar events have richer 

content and therefore it will take more time to simulate and reconstruct them. In fact, the 

runtime associated with the reconstruction of TTBar events can be considered an upper 
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bound and used as a measure to judge how much compute resources we need to process 

other kinds of events. 

 Monte Carlo generation, simulation, reconstruction. For the event generation and 

simulation, we selected two types of events: MinBias and TTBar. As already 

mentioned, TTBar is considered as the upper bound on the runtime for any type of 

workload. Therefore, by profiling the performance of it, we automatically infer the 

robustness of other workflows. In its current configuration, the LHC collides proton 

beams every 25ns and usually multiple collisions happen per bunch crossing (per 

25ns). As a consequence, one needs to reconstruct an event that comes from several 

proton-proton collisions. This effect is known as in-time Pile Up (PU). For the purpose 

of simulating the PU environment, MinBias events are used because they represent 

the most statistically frequent background events (known physics interactions are not 

of primary interest for researches). 

 Collision data reconstruction. CMS Datasets recorded during the 2017 production 

campaign will be used as they reflect the most upgraded detector so far. A certain 

number of events need to be considered in order to guarantee the use of enough 

computing nodes for the sake of benchmarking. The collision datasets to be run with 

the reconstruction benchmark are: 

1. /ZeroBias/Run2017F-v1/RAW, 

2. /JetHT/Run2017F-v1/RAW, 

3. /SingleEl/Run2017F-v1/RAW. 

7.6 Benchmarking results 

A continuous profiling and benchmarking of CMSSW applications across different kinds of 

architectures and optimisation levels requires the same scientific care that physicists use to 

discover new physics. Results obtained by scanning through the phase space of possible 

optimisations will point towards a better and more efficient configuration that will yield to 

higher throughput and lower computational cost. Provided below is a description of several 

single node test benchmarks that will serve as examples of what kind of results and numbers 

are expected to be measured. 

 GEN-SIM results on AMD. A set of benchmarks similar to the ones to be measured 

have been tested on a single machine equipped with 32 cores (2x for hyper-

threading) AMD Opteron 6376 processor with 128 GB of main memory. For the GEN-

SIM sequence, results are summarised in the following table: 
Table 14: GEN-SIM results on AMD. 

Gen 

Type 

Processes Threads Ev. per 

Thread 

Ev. per 

process 

Total 

Events 

Total 

Throughput 

Sum Max 

RSS 

Sum Max 

VMM 

TTbar 
32 1 250 250 8000 

0.570 ev/sec 25,361 

Mb 

31,560 

Mb 

TTbar 
64 1 200 200 12800 

0.881 ev/sec 48,568 

Mb 

78,274 

Mb 

TTbar 
16 4 200 800 12800 

0.855 ev/sec 14,334 

Mb 

27,998 

Mb 
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TTbar 
8 8 200 1600 12800 

0.861 ev/sec 10,243 

Mb 

19,888 

Mb 

MinBias 
64 1 1000 1000 64000 

4.63 ev/sec 45,343 

Mb 

76,290 

Mb 

MinBias 
16 4 1000 4000 64000 

4.03 ev/sec 14,622 

Mb 

28,833 

Mb 

MinBias 
8 8 1000 8000 64000 

4.01 ev/sec 7,563 Mb 20,650 

Mb 

 RECO results on AMD. The previous AMD node has also been employed to run a 

similar set of GEN-SIM benchmarks.  They measure the runtime of the reconstruction 

workflows of TTBar events mixed with MinBias in order to accommodate the Pile UP 

effects. Results are summarised in the following table: 
Table 15: RECO results on AMD. 

Proces

s 

Processe

s 

Thread

s 

Ev. per 

Thread 

Ev. per 

Process 

Total 

Events 

Total 

Throughput 

Sum Max 

RSS 

Sum Max 

VMM 

Reco 
42 1 100 100 4200 

1.430 ev/sec 108,723 

Mb 

163,543 Mb 

Reco 
16 4 100 400 6400 

1.693 ev/sec 76,440 Mb 121,598 Mb 

Reco 
8 8 100 800 6400 

1.474 ev/sec 59,417 Mb 97,910 Mb 

Reco 
48 1 800 800 51200 

1.556 ev/sec 133,349 

Mb 

205,392 Mb 

Reco 
32 1 800 800 25600 

1.203 ev/sec 91,832 Mb 136,149 Mb 

Reco 
32 2 800 1600 51200 

1.868 ev/sec 114,233 

Mb 

192,650 Mb 

Reco 
16 4 800 3200 51200 

1.839 ev/sec 82,974 Mb 149,697 Mb 

Reco 
8 8 800 6400 51200 

1.805 ev/sec 67,431 Mb 128,296 Mb 
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8 Global conclusion 
The objective of this document is to present a series of benchmarks to track the performance 

gains undergone by the applications as they adapt to the Modular Supercomputing 

Architecture built within the DEEP-EST project. This conclusion gives a brief summary of the 

most important aspects regarding benchmarking. 

Overall, it is clear that the most important metric to be measured during benchmarking is the 

time to solution or runtime, which is expressed in time units (e.g. seconds). Some 

applications like GROMACS measure the time step execution instead. In the case of CERN, 

it is the number of processed collisions per unit of time (throughput). All these concepts are 

ultimately related to the speed of the application. In the particular case of ASTRON, it is 

equally important to measure the performance (in TFLOPS) and energy efficiency (GFLOP/J) 

of their applications due to a constrained energy budget. KU Leuven also proposes to 

measure memory and I/O in addition to performance. Finally, machine and deep learning 

applications must be also benchmarked against model accuracy and, when relying on 

external packages or deep learning frameworks, one needs to measure the influence of 

these as well. 

Each application proposes different benchmarks that are especially adapted to its own 

requirements within the DEEP-EST project (cf. D1.11): 

 NMBU proposes an in-situ analysis-simulation framework where NEST, Arbor and 

Elephant run simultaneously in the MSA. NEST simulation provides relevant data to 

be analysed by the other two applications. Two benchmarks are proposed for NEST: 

a standard HPC benchmark based on a system of two neuronal populations as well 

as a simplified version of it whose objective is to stress crucial parts of the system 

such as process synchronisation, communication and random writes. Arbor and 

Elephant are benchmarked in a slightly different manner because they are based on 

purely synthetic input data. In the case of Arbor, three synthetic benchmarks are 

proposed, being the last one the most computationally intensive. Elephant is a 

Python-based library and the four proposed benchmarks are intended to measure the 

efficiency of cross-correlations using various Python implementations (e.g. Numpy to 

evaluate convolution functions) and the performance of the ASSET algorithm. 

 NCSA benchmarks aim at exploring the performance of Gromacs on various 

computer architectures (DEEP-SDV and KNL), with a hybrid parallel programming 

model (OpenMP and MPI) in the presence or not of hardware optimisations like 

vector instruction sets. The three proposed benchmarks increase in complexity both 

in terms of number of atoms and problem size. While the latency of the network is the 

limiting scalability factor for the smallest benchmark, the increase in MPI 

communications associated with the larger benchmark starts degrading scalability, 

which requires finding a balance between the number of MPI ranks per node and the 

number of OpenMP threads per MPI rank. 

 The correlator and imager applications of ASTRON have the particularity of being 

able to benchmark themselves, by generating synthetic input on the fly, and have 

been ported recently to FPGAs and made compatible with CUDA tensor cores since 

the beginning of the DEEP-EST project. It is clear that ASTRON applications largely 

benefit from GPUs or FPGAs performance over traditional CPUs, which justifies its 
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choice of using a GPU-based system as reference baseline to conduct their 

benchmarks. 

 KU Leuven proposes four benchmarks for xPic and another four for DLMOS. In the 

case of xPic, one benchmark is used for comparison between xPic and iPic3D utilised 

in the DEEP-ER project. Other two benchmarks aim at testing xPic under realistic 

conditions, i.e. using large memory loads, with and without taking into account I/O 

operations. A final micro-benchmark is proposed to highlight the impact of cache 

misses. The DLMOS benchmarks are oriented towards the efficiency of Python 

packages (similarly to what is proposed for Elephant) as well as TensorFlow and 

Keras frameworks. It is worth noting that benchmarking deep learning applications 

with such frameworks might require additional tuning, depending on the architecture, 

in order to avoid constraints due to memory and/or disk usage. 

 University of Iceland proposes two different benchmarks for its machine learning 

application HPDBSCAN. Each benchmark uses a different input size and a different 

number of hardware resources allowing them to be compared against each other in 

order to study the weak scalability of the application. As already discussed in 

deliverable D1.11, the piSVM application is purely based on MPI. Moreover, parallel 

load imbalance was detected in piSVM during the training on Extrae and Paraver that 

took place at BSC in November 2017 (piSVM’s imbalance is expected to be 

addressed in the near future). The two proposed piSVM benchmarks for the training 

and inference phases, respectively, are designed to evaluate the performance of the 

application over time with the integration of new features. Finally, further work needs 

to be done for UoI’s deep learning approach based on TensorFlow and Keras 

frameworks since there is not support for 3D convolution hardware-accelerated 

operations within Intel’s MKL library. 

 CERN is focused on two particular benchmarks intended to measure the throughput 

of high energy physics experiments, which is expected to sky rocket in 2024 after the 

Large Hadron Collider upgrade. The first benchmark is concentrated on the 

generation, simulation and reconstruction phases characteristic of high energy 

physics experiments while the second one focuses on the data reconstruction phase. 

Three collision data sets from an early experiment of 2017 are provided to guarantee 

that the systems are stressed during benchmarking. 

8.1 Next steps 

Next steps include the cooperation with colleagues from WP2 to ensure that benchmarking 

will be carried out smoothly during the project. Application’s tracing will be done in parallel 

with benchmarks, e.g. using Extrae. Finally, support for 3D convolution operations with 

TensorFlow using Intel’s MKL library is currently being discussed with colleagues at Intel. 

Furthermore, micro-benchmarking of the applications is currently being carried out in the 

AMD EPYC Naples 2S system by Intel. JUELICH and BSC will start benchmarking the 

applications against the ARM Cavium Thunder X2 architecture in order to determine the best 

architecture choice for the MSA, which will be presented in the future deliverable D3.2 at 

project month 12. 

The results obtained from benchmarking and tracing of the different applications (WP2) will 

help each application partner to develop its own strategy to use the DEEP-EST prototype in 

the most efficient manner. This will be presented in deliverable D1.3 at project month 12. 
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List of Acronyms and Abbreviations 

A 

AARTFAAC:  The Amsterdam-ASTRON Radio Transients Facility And Analysis 

Center; a LOFAR-based, all-sky radio telescope 

API: Application Programming Interface 

ASTRON: Netherlands Institute for Radio Astronomy, Netherlands 

 

B 

BN: Booster Node (functional entity) 

BoP: Board of Partners for the DEEP-EST Project 

BSC: Barcelona Supercomputing Centre, Spain 

BSCW: Repository used in the DEEP-EST Project to share all project 

documentation. 

 

C 

CERN: European Organisation for Nuclear Research / Organisation 

Européenne pour la Recherche Nucléaire, International organisation 

CM: Cluster Module: with its Cluster Nodes (CN) containing high-end 

general-purpose processors and a relatively large amount of memory 

per core 

CMS: Compact Muon Solenoid experiment at CERN’s LHC 

CN: Cluster Node (functional entity) 

CNN: Convolutional Neural Networks 

CPU: Central Processing Unit 

 

D 

DAM: Data Analytics Module: with nodes (DN) based on general-purpose 

processors, a huge amount of (non-volatile) memory per core, and 

support for the specific requirements of data-intensive applications 

DDG: Design and Developer Group of the DEEP-EST Project 

DEEP: Dynamical Exascale Entry Platform (project FP7-ICT-287530) 

DEEP-ER: DEEP - Extended Reach (project FP7-ICT-610476) 

DEEP-EST: DEEP - Extreme Scale Technologies 

Dimemas: Performance analysis tool developed by BSC 



D1.2  Application use cases and traces 

71 

DEEP-EST - 754304  28.03.2018 

DIMM:  Dual In-line Memory Module 

DSP: Digital Signal Processor 

DN: Nodes of the DAM 

DNN: Deep neural network 

DRAM: Dynamic Random Access Memory. Typically describes any form of high 

capacity volatile memory attached to a CPU 

 

E 

EC: European Commission 

ESB: Extreme Scale Booster: with highly energy-efficient many-core 

processors as Booster Nodes (BN), but a reduced amount of memory 

per core at high bandwidth 

EU:  European Union 

Exascale:  Computer systems or Applications, which are able to run with a 

performance above 1018 Floating point operations per second 

Extrae: Performance analysis tool developed by BSC 

 

F 

FFT: Fast Fourier Transform 

FMA:  Fused Multiply Add; an operation of the form A * B + C 

FP7: European Commission 7th Framework Programme 

FPGA: Field-Programmable Gate Array, Integrated circuit to be configured by 

the customer or designer after manufacturing 

 

G 

GCE: Global Collective Engine, a computing device for collective operations 

GFLOP/S: Gigaflop, 109 Floating point operations per second 

GFLOPS/W:  Giga (10^9) Floating-Point Operations per Second per Watt, or 

alternatively: Giga Floating-Point Operations per Joule (GFLOPS/J) 

GPU: Graphics Processing Unit 

GROMACS: A toolbox for molecular dynamics calculations providing a rich set of 

calculation types, preparation and analysis tools 

 

H 
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H2020: Horizon 2020 

HBM: High Bandwidth Memory 

HDL:  Hardware Description Language 

HPC: High Performance Computing 

HPDBSCAN: A clustering code used by UoI in the field of Earth Science 

HW: Hardware 

 

I 

Intel: Intel Germany GmbH, Feldkirchen, Germany 

I/O: Input/Output. May describe the respective logical function of a computer 

system or a certain physical instantiation 

 

J 

JUELICH: Forschungszentrum Jülich GmbH, Jülich, Germany 

JURON: JUelich and NeuRON supercomputer created by IBM and NVIDIA 

featuring Telsa graphics and POWER8 processors with the NVLink 

technology 

 

K 

KNL: Knights Landing, second generation of Intel® Xeon PhiTM 

KU Leuven: Katholieke Universiteit Leuven, Belgium 

 

L 

LHC: Large Hadron Collider (LHC), the world’s most powerful accelerator 

providing research facilities for High Energy Physics researchers across 

the globe 

LLNL: Lawrence Livermore National Laboratory 

LOFAR: Low-Frequency Array, an instrument for performing radio astronomy 

built by ASTRON 

 

M 

MPI: Message Passing Interface, API specification typically used in parallel 

programs that allows processes to communicate with one another by 

sending and receiving messages 
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MSA: Modular Supercomputer Architecture 

 

N 

NAM: Network Attached Memory 

NCSA: National Centre for Supercomputing Applications, Bulgaria 

NEST: Widely-used, publically available simulation software for spiking neural 

network models developed by NMBU. 

NMBU: Norwegian University of Life Sciences, Norway 

NN: Neural Network 

NUMA: Non-Uniform Memory Access 

NVM: Non-Volatile Memory. Used to describe a physical technology or the use 

of such technology in a non-block-oriented way in a computer system 

 

O 

OmpSs: BSC’s Superscalar (Ss) for OpenMP 

OpenCL: Open Computing Language, framework for writing programs that 

execute across heterogeneous platforms 

OpenMP: Open Multi-Processing, Application programming interface that support 

multiplatform shared memory multiprocessing 

 

P 

Paraver: Performance analysis tool developed by BSC 

ParTec: ParTec Cluster Competence Center GmbH, Munich, Germany. Linked 

third Party of JUELICH in DEEP-EST 

PCIe:  Peripheral Component Interconnect Express; a bus that is often used to 

connect CPUs to GPUs, network devices, etc. 

piSVM: Parallel classification algorithm 

PMT: Project Management Team of the DEEP-EST Project 

 

R 

RAM: Random-Access Memory 

 

S 
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SCR: Scalable Checkpoint/Restart. A library from LLNL 

SDV: Software Development Vehicle: HW systems to develop software in the 

time frame where the DEEP-EST Prototype is not yet available. 

SIMD: Single Instruction Multiple Data 

SIONlib: Parallel I/O library developed by Forschungszentrum Jülich 

SKA: Square Kilometre Array 

SSSM: Scalable Storage Service Module 

SVML:  The Short Vector Math Library 

SW: Software 

 

T 

TCP:  Transmission Control Protocol; a reliable, stream-based network 

protocol 

TFLOP/S: Teraflop, 1012 Floating point operations per second 

Tk: Task, Followed by a number, term to designate a Task inside a Work 

Package of the DEEP-EST Project 

 

U 

UDP:  User Datagram Protocol; an unreliable, packet-based network protocol 

UoI: Háskóli Íslands – University of Iceland, Iceland 

 

W 

WP: Work package 

 

X 

xPic Programming code developed by the KULeuven to simulate space 

weather  

 

 

 


