
 

 

 

 

 H2020-FETHPC-01-2016  

 

 

 

DEEP-EST 

 

DEEP Extreme Scale Technologies 

Grant Agreement Number: 754304 

 

D1.3 

Application distribution strategy 

 

Final 

 

 

 

 

Version:  1.0 

Author(s):  P. Martínez (BSC)  

Contributor(s): H. E. Plesser (NMBU), P. Petkov (NCSA), V. Pavlov (NCSA), S. Markov 

(NCSA), J. Romein (ASTRON), J. Amaya (KU Leuven), D. Gonzalez (KU 

Leuven), E. Erlingsson (UoI), H. Neukirchen (UoI), G. Cavallaro (UoI), S. 

Barakat (UoI) M. Riedel (UoI), M. Girone (CERN), V. Khristenko (CERN) 

Date: 29.06.2018

Ref. Ares(2018)3465295 - 29/06/2018



D1.3   Application distribution strategy 

2 

DEEP-EST - 754304   29.06.2018 

Project and Deliverable Information Sheet 

DEEP-EST Project Project Ref. №:         754304 

Project Title:             DEEP Extreme Scale Technologies 

Project Web Site:      http://www.deep-projects.eu 

Deliverable ID:          D1.3  

Deliverable Nature:   Report  

Deliverable Level: 

PU * 

Contractual Date of Delivery: 

30 / June / 2018 

Actual Date of Delivery: 

29 / June / 2018 

EC Project Officer:  Juan Pelegrín 

* - The dissemination levels are indicated as follows: PU = Public, fully open, e.g. web; CO = 

Confidential, restricted under conditions set out in Model Grant Agreement; CI = Classified, 

information as referred to in Commission Decision 2001/844/EC. 

 

Document Control Sheet 

 

Document 

Title:                 Application distribution strategy 

ID:                    D1.3 

Version:           1.0 Status:  Final 

Available at:     http://www.deep-projects.eu 

Software Tool:  Microsoft Word 

File(s):DEEP-EST_D1.3_Application_distribution_strategy_v01.0 

 

Authorship 

Written by: P. Martínez (BSC)  

Contributors: H. E. Plesser (NMBU), P. Petkov (NCSA), 

V. Pavlov (NCSA), S. Markov (NCSA), J. 

Romein (ASTRON), J. Amaya (KU 

Leuven), D. Gonzalez (KU Leuven), E. 

Erlingsson (UoI), H. Neukirchen (UoI), G. 

Cavallaro (UoI), S. Barakat (UoI) M. 

Riedel (UoI), M. Girone (CERN), V. 

Khristenko (CERN) 

Reviewed by: Niels Burkhardt (EXTOLL), I.Schmitz 

(ParTec) 

Approved by: BoP/PMT 

 



D1.3   Application distribution strategy 

3 

DEEP-EST - 754304   29.06.2018 

Document Status Sheet 

Version Date Status Comments 

1.0 29/June/2018 Final version EC submission 

    

 

  



D1.3   Application distribution strategy 

4 

DEEP-EST - 754304   29.06.2018 

Document Keywords  

Keywords: DEEP-EST, HPC, Exascale, Applications, Co-design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright notice: 

 2017-2020 DEEP-EST Consortium Partners. All rights reserved. This document is a 

project document of the DEEP-EST Project. All contents are reserved by default and may 

not be disclosed to third parties without the written consent of the DEEP-EST partners, 

except as mandated by the European Commission contract 754304 for reviewing and 

dissemination purposes.  

All trademarks and other rights on third party products mentioned in this document are 

acknowledged as own by the respective holders. 

 



D1.3   Application distribution strategy 

5 

DEEP-EST - 754304   29.06.2018 

Table of Contents 

Document Control Sheet .................................................................................................... 2 

Document Status Sheet ...................................................................................................... 3 

Document Keywords ........................................................................................................... 4 

Table of Contents ................................................................................................................ 5 

List of Figures...................................................................................................................... 6 

Executive Summary ............................................................................................................ 8 

1 Introduction .................................................................................................................. 9 

2 Task 1.2: Neuroscience (NMBU) ................................................................................ 10 

2.1 Introduction .......................................................................................................................... 10 

2.2 Application partitioning ...................................................................................................... 13 

2.3 Application mapping ........................................................................................................... 14 

3 Task 1.3: Molecular dynamics (NCSA) ...................................................................... 16 

3.1 Introduction .......................................................................................................................... 16 

3.2 Application partitioning ...................................................................................................... 16 

3.3 Application mapping ........................................................................................................... 18 

3.4 Preliminary benchmark results .......................................................................................... 19 

4 Task 1.4: Radio astronomy (ASTRON) ...................................................................... 20 

4.1 Introduction .......................................................................................................................... 20 

4.2 Application partitioning ...................................................................................................... 20 

4.3 Application mapping ........................................................................................................... 21 

5 Task 1.5: Space Weather (KU Leuven) ...................................................................... 24 

5.1 Application partitioning ...................................................................................................... 25 

5.2 Application mapping ........................................................................................................... 26 

6 Task 1.6: Data analytics in Earth Science (UoI) ........................................................ 30 

6.1 Introduction .......................................................................................................................... 30 

6.2 Application partitioning ...................................................................................................... 31 

6.3 Application mapping ........................................................................................................... 33 

7 Task 1.7: High Energy Physics (CERN) .................................................................... 39 

7.1 Introduction .......................................................................................................................... 39 

7.2 Application partitioning ...................................................................................................... 39 

7.3 Application mapping ........................................................................................................... 40 

8 Global conclusion ...................................................................................................... 42 

8.1 Next steps ............................................................................................................................ 43 

List of Acronyms and Abbreviations ............................................................................... 44 

 

  



D1.3   Application distribution strategy 

6 

DEEP-EST - 754304   29.06.2018 

List of Figures 

Figure 1: Neuroscience simulation and analytics workflow for NEST with in situ computation of 
local field potentials using Arbor and HybridLFPy (left path) and in situ statistical analysis using 
Elephant (right path). ............................................................................................................10 

Figure 2: NMBU schematic workflow of NEST and Arbor/HybridLFPY in the DEEP-EST 
Modular Supercomputing Architecture (MSA). NEST runs on the CM and Arbor/HybridLFPy 
on the ESB. When the NEST build phase is completed, connectivity data is transferred from 
CM to ESB, where it is used by HybridLFPy to create the mapping between NEST spiking 
neurons and Arbor compartmental neurons. During the NEST simulation phase recent spikes 
recorded from part of the network need to be transferred from CM to ESB in short intervals, 
where they are fed to Arbor compartmental neurons. MPI communication is coordinated by the 
MUSIC library. ......................................................................................................................12 

Figure 3: NMBU schematic workflow of NEST and Elephant (ASSET) in the DEEP-EST 
Modular Supercomputing Architecture (MSA). NEST runs on the CM and Elephant runs on the 
DAM. During the NEST simulation phase the latest spikes recorded from selected neuronal 
populations need to be transferred from CM to DAM in short intervals, where they are fed to 
Elephant. MPI communication is coordinated by the MUSIC library. .....................................13 

Figure 4: Flowchart for a typical simulation step for both particle and PME nodes. [Berk Hess*, 
Carsten Kutzner, David van der Spoel, and Erik Lindahl, GROMACS 4:  Algorithms for Highly 
Efficient, Load-Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and 
Computation 2008 4 (3), 435-447] ........................................................................................17 

Figure 5: NCSA schematic workflow in the DEEP-EST Modular Supercomputing Architecture 
(MSA). ..................................................................................................................................18 

Figure 6: Gromacs 2018 performance of 325k atom test system on KNL partition (blue) only, 
DEEP-ER SDV partition (orange) only, Cluster-Booster mapping on KNL and DEEP-ER SDV 
partitions (red). .....................................................................................................................19 

Figure 7: Correlator pipeline. ................................................................................................21 

Figure 8: Imager pipeline. .....................................................................................................21 

Figure 9: GPU correlator schematic workflow in the DEEP-EST Modular Supercomputer 
Architecture (MSA). ..............................................................................................................22 

Figure 10: FPGA correlator schematic workflow in the DEEP-EST Modular Supercomputer 
Architecture (MSA). ..............................................................................................................22 

Figure 11: GPU imager schematic workflow in the DEEP-EST Modular Supercomputer 
Architecture (MSA). ..............................................................................................................23 

Figure 12: FPGA imager schematic workflow in the DEEP-EST Modular Supercomputer 
Architecture (MSA). ..............................................................................................................23 

Figure 13: KU Leuven schematic workflow in the DEEP-EST Modular Supercomputing 
Architecture (MSA). ..............................................................................................................25 

Figure 14: HPDBSCAN schematic workflow A in the DEEP-EST MSA. Note that the dashed 
lines represent optional flows. ..............................................................................................34 

Figure 15: HPDBSCAN schematic workflow B in the DEEP-EST MSA. Note that the dashed 
lines represent optional flows. ..............................................................................................34 

Figure 16: PiSVM schematic workflow C in the DEEP-EST MSA. Note that the dashed line 
represents an optional flow extension. ..................................................................................36 

Figure 17: PiSVM schematic workflow D in the DEEP-EST MSA. Note that the dashed line 
represents an optional flow extension. ..................................................................................36 



D1.3   Application distribution strategy 

7 

DEEP-EST - 754304   29.06.2018 

Figure 18: Deep neural network schematic workflow E in the DEEP-EST MSA. Note that the 
dashed lines represent optional flow extension.....................................................................37 

Figure 19: Deep neural network schematic workflow F in the DEEP-EST MSA. Note that the 
dashed lines represent optional flow extension.....................................................................38 

 

  



D1.3   Application distribution strategy 

8 

DEEP-EST - 754304   29.06.2018 

Executive Summary 

The main goal of the applications work package, namely WP1, in the DEEP extreme scale 

technologies (DEEP-EST) project is to assess the modular supercomputing architecture (MSA) 

developed in the project and to evaluate the DEEP-EST prototype. For this purpose, six 

applications from a wide range of scientific fields are chosen. These will show that the new 

architecture is beneficial for not only one specific kind of application, but for several ones and 

in different ways. 

This third deliverable gives a detailed partition of each application as well as its mapping into 

the MSA. It is worth noting that the different mappings presented in this work are determined, 

firstly, by each application’s specific requirements and, secondly, by the design and 

development group (DDG) choice of architecture for the different modules that will integrate 

the MSA, therefore resulting in a truly co-design effort. The changes undergone by the 

applications and their performance assessment (based on the benchmarking and analysis 

tools introduced in early stages of the project) will highlight the importance of the DEEP-EST 

co-design project. 
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1 Introduction 

The first deliverable D1.1 reported on each DEEP-EST’s application structure and its 

requirements, both in terms of hardware and software, for the co-design of the MSA to be built 

within the DEEP-EST project1. The second deliverable D1.2 presented the benchmarks that 

will track the performance progress that each application will undergo throughout the lifespan 

of the project2. 

The aim of this third document, entitled “Application distribution strategy”, is to detail the 

application distribution within each module of the MSA.  For this purpose, the present 

document is structured as follows: 

1. Firstly, each section begins with a short introduction to the corresponding application 

or group of applications. 

2. Secondly, each application is partitioned, that is, dissected into its logical parts; these 

logical parts make sense on their own and, more importantly, vis-à-vis the MSA. 

3. Finally, each application is mapped into different modules of the MSA. This is 

illustrated via workflows, which effectively show how applications intend to use each 

specific module of the MSA, during the timeframe of their execution, and depending 

on their particular requirements.  

                                                
1A. Kreuzer, P. Martínez, H. E. Plesser, P. Petkov, V. Pavlov, J. Romein, J. Amaya, D. Gonzalez, M. Riedel, M. 
Girone, V. Khristenko. “Application co-design input”, Deliverable D1.1, DEEP Extreme Scale Technologies (2017). 
2P. Martínez, H. E. Plesser, P. Petkov, V. Pavlov, J. Romein, J. Amaya, D. Gonzalez, E. Erlingsson, H. Neukirchen, 
G. Cavallaro, S. Barakat, M. Riedel, M. Girone, V. Khristenko. “Application use cases and traces”, Deliverable D1.2, 
DEEP Extreme Scale Technologies (2017). 
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2 Task 1.2: Neuroscience (NMBU) 

2.1 Introduction 

The long-term goal of the neuroscience task in DEEP-EST is to provide an optimised setup for 

the integrated simulation and analysis of large-scale brain activity. Such in situ analysis is 

essential to facilitate the interactive investigations of brain dynamics, where scientists can 

observe network activity while a simulation is running and interact with the simulation to ensure 

that dynamics stay within relevant regimes. In DEEP-EST, our focus will be on simulations of 

functional models of brain structure simulated using the NEST simulator3 combined with two 

types of in situ analysis: computation of electrical local field potentials using the Arbor4 and 

HybridLFPy packages5 on the one side, and statistical analysis of spike activity using the 

Elephant package6 on the other. NEST will be executed on the CM, Arbor/HybridLFPy on the 

ESB and Elephant on the DAM. NEST output will be communicated to the analysis packages 

using the MUSIC library7. 

 
Figure 1: Neuroscience simulation and analytics workflow for NEST with in situ computation of local field 
potentials using Arbor and HybridLFPy (left path) and in situ statistical analysis using Elephant (right path). 

2.1.1 NEST 

NEST is a simulation code for the investigation of the dynamics of brain-scale neuronal network 

models, as for example the recently published multi-area model8. NEST operates on the level 

of resolution of neurons and synapses, where neurons are brain cells which are connected to 

each other by synapses. 

The simulator considers brain tissue as an abstract assembly of nodes (neurons) and 

connections (synapses) or, in other words, a directed graph. The neurons in these simulations 

are point neurons, i.e. the state of a node changes according to a set of ordinary differential 

equations (ODE), without taking into account the complete morphology of the cell. The 

interaction between nodes is mediated by stereotyped events in the form of delayed delta 

pulses. These so-called action potentials (or spikes) are emitted by the nodes (neuronal 

activity) and propagated along the connections. The interaction strength (synaptic weight) can 

                                                
3 http://www.nest-simulator.org/ 
4 https://github.com/eth-cscs/arbor 
5 Hagen E et al. (2016) Cerebral Cortex, 26(12) pp. 4461–4496. doi: 10.1093/cercor/bhw237 
6 http://elephant.readthedocs.io 
7 Djurfeldt M et al. (2010) Neuroinform 8: 43. doi: 10.1007/s12021-010-9064-z 
8 Schmidt M et al. (2018) Brain Struct Funct 223: 1409. doi: 10.1007/s00429-017-1554-4 

http://www.nest-simulator.org/
https://github.com/eth-cscs/arbor
https://doi.org/10.1093/cercor/bhw237
http://elephant.readthedocs.io/
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s00429-017-1554-4
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either be static or dynamic (synaptic plasticity) and depends on the activity of the two neurons 

joined by the connection. 

NEST does not implement a specific network model but provides the user with a range of 

neuron and synapse models and efficient routines to connect them to complex networks with 

on the order of ten thousand incoming and outgoing connections for each neuron. Concrete 

network models and the corresponding simulation experiments are specified by model 

description scripts. These scripts are written either in NEST’s built-in simulation language SLI 

(based on PostScript) or using the Cython-based Python interface PyNEST9,10, with PyNEST 

being the default interface. 

A recently published example of a large-scale network model is the multi-area model, which is 

relevant also in the context of the DEEP-EST project. It is the first multi-scale model of vision 

related brain areas and comprises approximately 4 million neurons and 6000 incoming 

synapses per neuron, where neurons emit on average 14.6 spikes/s. Each individual area is 

represented by a modified version of the Potjans-Diesmann model11, a microcircuit model 

corresponding to a cortical network under a surface of 1 mm2. The microcircuits representing 

the areas differ in neuron numbers and connection probabilities. The minimal synaptic 

transmission delay in the network is 0.1 ms biological time, i.e., the time simulated in the 

biological system. This requires frequent MPI communication of spikes (every 0.1 ms biological 

time). In terms of wallclock time, MPI communication occurs at approximately 10–30 ms 

intervals, depending on the activity level in the neuronal network. Due to long transients in the 

network dynamics the model needs to be simulated for 100 s biological time. 

The NEST code base is open source and under continuous development in order to enable 

the investigation of novel models and theories in Computational Neuroscience on the one hand 

and to meet the requirements of new computer hardware on the other hand. The NEST release 

2.16 includes the NEST 5th generation simulation kernel (5g)12, which achieves excellent 

scaling with respect to memory usage and good scaling with respect to runtime on the largest 

supercomputers currently available for academic research. The key step from the previous 

kernel used in NEST releases 2.6.0–2.14.0 to the 5g kernel is a new connectivity 

representation and spike exchange scheme using directed communication based on 

MPI_Alltoall(). 

2.1.2 Arbor/HybridLFPy 

Arbor simulates compartmental neuron models. This means that the spatial structure of each 

neuron is represented as a spherical cell body (soma), to which an arbitrary number of dendritic 

trees are attached. Each dendritic tree consists of segments, i.e. tubes or cables, of a given 

length and radius; in the simulation, each segment is represented by a configurable number of 

compartments. Each segment is either connected to one other segment at each of its ends 

(linear cable) or to several segments at its far end (branching point; far end: end pointing away 

from the soma). Electric currents flow along the cables formed by the dendritic tree. This 

current flow is described by ordinary differential equations, with one set of equations for each 

compartment, coupled to neighbouring compartments. The main task of Arbor is to solve the 

resulting system of ODEs; this task is highly amenable to vectorisation. In addition, Arbor also 

                                                
9 Eppler, JM et al. (2008) Front. Neuroinform. 2:12. doi: 10.3389/neuro.11.012.2008 
10 Zaytsev YV and Morrison A (2014) Front. Neuroinform. 8:23. doi: 10.3389/fninf.2014.00023 
11 Potjans TC and Diesmann M (2014) Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358 
12 Jordan J et al. (2018) Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002 

https://doi.org/10.1371/journal.pcbi.1004939
https://doi.org/10.3389/fninf.2014.00023
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.3389/fninf.2018.00002
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transmits spikes between neurons via synapses; this mechanism is of lesser importance for 

our purposes because HybridLFPy is based on simulating the dynamics of disconnected 

compartmental neurons based on spike input generated by NEST. 

HybridLFPy computes mesoscopic electrical brain signals, called local field potentials (LFPs) 

based on the network dynamics simulated using NEST. Specifically, spike trains generated by 

neurons in a NEST simulation, using highly connected point neurons are fed into detailed 

models of unconnected neurons simulated using Arbor to compute the electrical currents 

passing through the cell membrane at different locations. From these currents, HybridLFPy 

then computes the LFP at different locations in a piece of brain tissue using electrostatic 

principles. Currently, HybridLFPy is run only after a NEST simulation is complete. In the DEEP-

EST project, our aim is to compute LFP signals in situ, while the network simulation is running. 

 
Figure 2: NMBU schematic workflow of NEST and Arbor/HybridLFPY in the DEEP-EST Modular 
Supercomputing Architecture (MSA). NEST runs on the CM and Arbor/HybridLFPy on the ESB. When the 
NEST build phase is completed, connectivity data is transferred from CM to ESB, where it is used by 
HybridLFPy to create the mapping between NEST spiking neurons and Arbor compartmental neurons. 
During the NEST simulation phase recent spikes recorded from part of the network need to be transferred 
from CM to ESB in short intervals, where they are fed to Arbor compartmental neurons. MPI communication 
is coordinated by the MUSIC library. 

2.1.3 Elephant (ASSET) 

Elephant is a pure Python library for the statistical analysis of spike activity of neurons. It can 

be installed using standard Python distribution tools. Elephant implements a wide and growing 

range of analysis methods. We focus mainly on the calculation of cross-correlations between 

spike trains and the detection of repeated patterns of spike activity across groups of neurons, 

so-called synfire chains. 

Cross-correlations are detected using standard approaches, either implemented directly in 

Python or using NumPy convolution algorithms. Except for possible thread-parallelisation 

provided by the NumPy convolution implementation, cross-correlation algorithms are purely 

serial at present. 

Detection of synfire chains uses the ASSET algorithm13 in a recently optimised version14, 

replacing the non-optimised version currently included in the release version of Elephant. The 

optimised algorithm uses MPI4Py for parallelisation. 

                                                
13 Torre E et al. (2016) PLoS Comput Biol 12(7): e1004939. doi: 10.1371/journal.pcbi.1004939 
14 Canova C et al. (2017) ASSET for JULIA: executing massive parallel spike correlation analysis on a KNL cluster. 
Poster presented at HBP Summit 2017. 

https://doi.org/10.1371/journal.pcbi.1004939
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Figure 3: NMBU schematic workflow of NEST and Elephant (ASSET) in the DEEP-EST Modular 
Supercomputing Architecture (MSA). NEST runs on the CM and Elephant runs on the DAM. During the NEST 
simulation phase the latest spikes recorded from selected neuronal populations need to be transferred 
from CM to DAM in short intervals, where they are fed to Elephant. MPI communication is coordinated by 
the MUSIC library. 

2.2 Application partitioning 

2.2.1 NEST 

Traditionally, NEST simulations have two distinct phases: a network construction (build) phase 

and a simulation phase. The key part of the build phase is the construction of network 

connectivity, i.e., building in largely random order a hierarchical data structure representing 

connections between neurons; each connection is represented only on the thread managing 

the connection’s target neuron. 

During the simulation phase, differential equations for the individual neurons are updated and 

spikes emitted according to a threshold criterion. Information on emitted spikes is exchanged 

between MPI processes and threads in steps of the minimal synaptic delay in the network, 

which is the maximum interval permitted by causality. Spikes are delivered to target neurons 

in parallel, each virtual process being responsible for delivery to the set of neurons it manages. 

This delivery process entails essentially random accesses to the connectivity data structure. 

For the fifth generation (5G) kernel, we distinguish a third phase, called initialization phase, 

which comprises all necessary initialization processes at the beginning of a NEST simulation 

before the actual simulation takes place. In the NEST 5G kernel (NEST release 2.16), 

connectivity information, which is available only on the postsynaptic side after the build phase, 

needs to be transferred to the presynaptic side in order to enable directed communication of 

spikes during simulation. The transfer of connectivity data involves at least one round of 

MPI_Alltoall communication, which makes the initialization phase a non-negligible component. 

In the benchmarks hpc_benchmark.sli and hpc_mam_benchmark.sli, build phase and 

initialization phase take up a significant amount of the total runtime as the neuronal networks 

are simulated only for one second of biological time. In simulations of the multi-area model, 

build phase and initialization phase require only a small fraction of the total runtime as the 

network is simulated for 100 s of biological time. 

To enable the interaction of NEST with Arbor/HybridLFPy (see Figure 2), a small fraction of 

the connectivity details of the multi-area network, which is available after the build phase of 

NEST, needs to be communicated, where HybridLFPy maps the connectivity to the detailed 

neuron models. 
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During the simulation phase NEST needs to communicate spikes from a fraction of the neurons 

of the multi-area model to Arbor or Elephant. Communication takes place frequently and is 

coordinated by the MUSIC library (see Figure 2 and Figure 3). We estimate that the total 

amount of data that needs to be communicated from CM to ESB or DAM in each 

communication round is negligible (about 1kB if we assume communication every 0.1 ms of 

simulated time). 

2.2.2 Arbor/HybridLFPy 

NEST (on CM) and Arbor/HybridLFPy (on ESB) start to run at the same time (see Figure 2). 

While NEST constructs neurons and connections, Arbor instantiates neuron models. After the 

build phase of NEST, detailed connectivity information about the multi-area network is 

available. HybridLFPy requires part of this connectivity data in order to map the incoming 

connections of selected point-neurons simulated in NEST to their compartmental counterparts 

simulated in Arbor. Based on that, Arbor can build connections to the neuronal compartments. 

After the communication of connectivity data from CM to ESB, NEST enters the initialization 

phase, which does not necessarily end at the same time as the Arbor build phase (for simplicity 

this detail is not shown in Figure 2). The simulation phases of both NEST and Arbor follow, 

where Arbor relies on frequent spike input from NEST. 

During the simultaneous simulation phases of NEST and Arbor, full network activity of the 

multi-area model is simulated in NEST and spikes from the previously selected fraction of the 

network are frequently communicated to Arbor running on the ESB using the MPI-based 

MUSIC library. The spatially detailed (compartmental) neuron models simulated in Arbor 

consume the spikes according to the mapping created by HybridLFPy. 

Locally on the ESB HybridLFPy requires frequent information about ionic currents into and out 

of the neuronal compartments simulated in Arbor in order to predict the LFP signals and their 

development over time. 

2.2.3 Elephant (ASSET) 

Elephant is fed with spikes from selected populations of the multi-area model using the MUSIC 

library to coordinate MPI communication (see Figure 3). Therefore, NEST (on CM) and the 

Python script that applies the necessary Elephant functions to the incoming spike trains (on 

DAM) start to run at the same time but the Python script needs to wait with the analysis until 

NEST reaches the simulation phase and produces spikes. 

We expect that in simulations of the multi-area model this initial idle time of Elephant will be 

irrelevant as neither build nor initialization time, but the actual simulation time dominates the 

total runtime of NEST. 

2.3 Application mapping 

The simulation of the multi-area model with NEST is run on the CM using a hybrid 

parallelisation scheme combining MPI and OpenMP threads. CM is optimal for NEST, because 

NEST's irregular memory access patterns perform optimally on CPUs with large, low-latency 

RAM and because NEST does not benefit from vectorisation.  

Selected neurons of the multi-area network are simulated in greater detail with Arbor running 

on the ESB, because Arbor requires considerably more compute power relative to memory, 
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since Arbor simulation does not require full network connectivity information. Arbor benefits 

significantly from vectorisation using AVX2, AVX512, and GPGPUs; it uses hybrid 

parallelisation combining MPI and C++11 threads or Intel TBB.  

Analysis of spike trains recorded from selected populations of the multi-area model is carried 

out by Elephant, which runs on the DAM. 

The changes in hardware design necessitated by Intel's discontinuation of the Knight's Landing 

processor architecture makes the application mapping for NEST, Arbor and Elephant less 

unequivocal than anticipated. We will review it systematically once test systems become 

available to ensure that each application runs on the module providing maximal overall 

performance.  
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3 Task 1.3: Molecular dynamics (NCSA) 

3.1 Introduction 

GROMACS is one of the fastest molecular dynamics simulators in the world. It is used mainly 

for soft matter molecular dynamics (MD) simulations with implementation in life sciences. 

GROMACS tracks the trajectories of a system of particles (atoms) that evolves in time by 

solving differential equations of motion at each time step. The coordinates and velocities of the 

particles are calculated by using the coordinates and velocities from the previous time frame. 

In each time step, one needs to calculate the forces acting on each atom, which is indeed the 

most time-consuming operation. Usually, pairs of atoms are defined in a predefined cut-off 

radius calculating short-range interactions, while the long-range interactions are calculated 

using Fast Fourier Transform (FFT) based algorithms. 

3.2 Application partitioning 

The particle-mesh Ewald (PME) algorithm uses FFT to solve long-range electrostatic 

contribution to real-space direct Coulomb sums. The reader should consider the fact that the 

specific implementation involving All-to-All MPI communications causes the performance 

scalability to drop. The latter can be solved by overlapping real-space calculations and Fourier-

space calculations. In GROMACS the MPI ranks divided into two groups: one for real-space 

calculations (PP nodes) and the rest being dedicated to PME calculations (PME nodes). As 

shown in Figure 4, the resulting flowchart in an MD step can be described in the following 

manner. Each PP node has a corresponding PME node. At the beginning of the time step, 

each PP node sends coordinates and charges to its corresponding PME node and once the 

PME calculations are completed, each PME node sends the resulting forces back to the 

corresponding PP node. Meanwhile, all collective communications proceed only between PME 

nodes as well as only between PP nodes and overlapping the FFT All-to-All communications 

(exchanged between PME nodes only) with real-space calculations. Consequently, one must 

optimise the number of PP and PME nodes in such a way that PME nodes need to send the 

forces they have calculated in the exact moment when PP node need Fourier-space forces, 

energies, etc. The GROMACS tool called tune_pme provides the ability for the users to scan 

different combinations and start the simulation with an optimal PP/PME nodes ratio whilst the 

mdrun simulator further tunes the PME mesh and cut-off radius at the beginning of the MD 

simulation run. 
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Figure 4: Flowchart for a typical simulation step for both particle and PME nodes. [Berk Hess*, Carsten 
Kutzner, David van der Spoel, and Erik Lindahl, GROMACS 4:  Algorithms for Highly Efficient, Load-
Balanced, and Scalable Molecular Simulation, Journal of Chemical Theory and Computation 2008 4 (3), 435-
447] 
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3.3 Application mapping 

 
Figure 5: NCSA schematic workflow in the DEEP-EST Modular Supercomputing Architecture (MSA). 

The two groups of nodes introduced above could be mapped to two modules of MSA type 

architecture: 

 The PP nodes, which calculate pair forces over neighbour particles. GROMACS has 

SIMD kernels for efficient utilisation of vector operations offered by the DEEP-EST ESB 

module. MPI parallelisation would be used between processes running on CPU cores 

and groups of them. Finally, OpenMP parallelisation could also be used.  

 A small number of PME nodes is preferable in order to reduce All-to-All MPI 

communications. Therefore, this part of the application should be run on a module 

which offers relatively higher performance per CPU core, i.e. CM or DAM modules. An 

optimal number of PME ranks would balance the calculation time of both PP and PME 

nodes. For this, hybrid MPI/OpenMP parallelisation is envisaged. 

The resulting application mapping, which uses both the CM and ESB, is depicted in Figure 5 

(see also Figure 4 for most important parts of a typical simulation step). The amount of 

hardware resources required to run a specific simulation should guarantee similar computation 

and communication times within groups of PP and PME nodes as well as between PP and 

PME nodes. 

From a computer architecture point of view, the CM should have good node interconnect (for 

low latency all-to-all MPI communications) and high performance cores (e.g. frequency higher 

than 3 GHz). On the other hand, the CPUs integrating the ESB should have many cores with 

vector instructions, high memory bandwidth (suitable for loops over big arrays), and a node 

interconnect with good performance for point-to-point MPI communications. The 

interconnecting networks of the ESB and CM, as well as the ESB-CM interconnect, must have 

100GB/s or even higher bandwidth. 
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3.4 Preliminary benchmark results 

The idea of application MSA mapping was tested on DEEP-ER EXTOLL partition, which 

consists of DEEP-ER SDV nodes (Haswell) and KNL nodes with EXTOLL interconnect. A 325k 

atom system was used to measure GROMACS 2018 performance: it scales well on the SDV 

partition and poorly on the KNL partition. 

In Figure 6 blue bars represent the performance of GROMACS on KNL nodes, orange bars on 

DEEP-ER SDV nodes and red bars on SDV nodes. In these real space calculations, i.e. PP 

nodes, used the KNL partition while reciprocal space calculations, i.e. PME nodes, used the 

SDV nodes. Each SDV node used 24 MPI ranks with 2 OpenMP threads per rank. Each KNL 

node used 64 MPI ranks and 2 OpenMP threads per rank. Two executables compiled for 

Haswell and KNL architectures were used respectively. The executable for KNL was compiled 

with MIC-AVX512 Intel compiler option to enable AVX-512 instruction set optimised kernels. 

The results of Figure 6 show a clear advantage when using the Cluster-Booster mapping. 

 
Figure 6: Gromacs 2018 performance of 325k atom test system on KNL partition (blue) only, DEEP-ER SDV 
partition (orange) only, Cluster-Booster mapping on KNL and DEEP-ER SDV partitions (red).  
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4 Task 1.4: Radio astronomy (ASTRON) 

4.1 Introduction 

ASTRON will explore two applications on the DEEP-EST Modular Supercomputer 

Architecture: a correlator and an imager. The correlator combines telescope data; the imager 

creates sky images. 

Both applications are highly optimised for GPUs and CPUs. Yet, they run much faster on GPUs 

than on CPUs, albeit for different reasons. The imager performs a large number of sine/cosine 

operations, for which there is efficient hardware support on GPUs but not on CPUs. The newly 

developed GPU correlator takes advantage of the tensor cores of the latest GPU generation. 

Tensor cores are special-purpose mixed-precision matrix multiplication hardware with an 

exceptionally high performance: 71 TFLOP/s on correlations. Hence, both applications are 

tens of times faster on GPUs than on CPUs, and this affects the way we will use them on the 

DEEP-EST MSA. 

Both applications are also being ported to FPGAs. FPGAs used to be programmed in 

Hardware Description Languages like VHDL and Verilog, which is difficult, time consuming and 

error prone, and not feasible for complex applications like the imager. New FPGA technologies 

(the OpenCL high-level programming language, hard Floating-Point Units, and tight integration 

with CPU cores) have changed this: they should reduce the programming effort of “simple” 

tasks like a correlator, and should allow complex applications like the imager. We explore 

Intel's OpenCL/FPGA technology to allow comparisons with GPUs (with respect to 

performance, energy efficiency, and programming effort), and to bring these technologies into 

radio astronomy. 

Apart from the correlator and imager applications, there is a third task for which the 

computational resources of the DEEP-EST MSA are needed: creating FPGA designs. 

Compiling an OpenCL program for FPGAs takes long: typically 8-12 hours for the currently 

available Arria 10 FPGA, and probably even longer for the bigger Stratix 10 FPGAs that are 

planned for the DAM. We need to perform many of these compilations when doing 

performance optimisations for FPGAs, for parameter tuning and for compiling an application 

with different seeds that have a large and random impact on the clock frequency with which 

the application will eventually run. FPGA compilations do not only take long, they also require 

much memory (typically 50 GBytes for the Arria 10, for the Stratix 10 possibly more). In 

addition, using many CPU cores does not help, as only one to four threads are used throughout 

the compilation process. 

Neither the correlator nor the imager run as distributed (MPI) applications, but rather as 

independent tasks on multiple nodes. They are trivially parallel, operating on different 

frequency bands or different observations. 

4.2 Application partitioning 

Both the correlator and the imager perform a series of operations that are described below. 

More details can be found in the application description document15. 

                                                
15 https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/d2411360/application-description-ASTRON.pdf  

https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/d2411360/application-description-ASTRON.pdf
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4.2.1 Correlator 

 
Figure 7: Correlator pipeline. 

The correlator operates on streaming telescope data, normally in real time. As illustrated by 

Figure 7: Correlator pipeline. Figure 7, it first performs some filtering, then some corrections, 

and finally correlates (combines) the data from multiple receivers. The filter splits a wide 

frequency band into narrower frequency channels, like a digital prism that splits white light into 

colours. The filter consists of a Finite Impulse Response (FIR) filter and an FFT (the FIR filter 

reduces leaking into adjacent frequency channels). The correlator also performs a phase 

correction to the incoming signals (delay compensation, to follow a sky source) and an 

amplitude correction (bandpass correction, to correct errors introduced by another filter near 

the receivers). Finally, the correlator computes all correlations, which is the most compute-

intensive step. 

4.2.2 Imager 

 
Figure 8: Imager pipeline. 

The imager also performs a series of operations (see Figure 8). Incoming data is partitioned in 

small blocks that are convolved and gridded onto small subgrids. These subgrids are fast 

Fourier transformed (FFTed). The FFTed subgrids are added to a large grid (the Fourier 

transformed sky image that is being created).  The grid is finally inversely FFTed to a sky 

image. 

Note that the imager is also able to perform all steps in the backward direction; this is not 

shown in the figure. 

4.3 Application mapping 

Below, we will elaborate on the application mappings for FPGA compilations, the correlator, 

and the imager onto the DEEP-EST Modular Supercomputer Architecture (MSA). 

4.3.1 FPGA compilations 

The Cluster Module nodes are most suitable for creating FPGA designs, due to the high clock 

speed of their CPUs. Compiling for a FPGA does not require the FPGA to be present in the 

same machine. The DAM machines are also suitable to perform many concurrent compilations 

(due to their large amounts of memory), but we do not want to allocate DAM machines for 

extended periods of time without using their GPUs or FPGAs. The ESB has many cores but 

cannot perform many concurrent compilations because of the high memory usage of each 

compilation. 
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4.3.2 Correlator 

 
Figure 9: GPU correlator schematic workflow in the DEEP-EST Modular Supercomputer Architecture 
(MSA). 

 
Figure 10: FPGA correlator schematic workflow in the DEEP-EST Modular Supercomputer Architecture 
(MSA). 

Due to the high data rates between the pipeline components of the correlator (in excess of 

PCIe bandwidth limits), it is not logical to separate the operations and run them on different 

DEEP-EST module types. All operations will be performed consecutively on the GPUs or the 

FPGAs of the DAM modules (see Figure 9 and Figure 10, respectively). 
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4.3.3 Imager 

 
Figure 11: GPU imager schematic workflow in the DEEP-EST Modular Supercomputer Architecture (MSA). 

 
Figure 12: FPGA imager schematic workflow in the DEEP-EST Modular Supercomputer Architecture 
(MSA). 

The gridder should definitely run on GPUs (or FPGAs) due to the large amounts of sine/cosine 

operations that it performs, hence it should run on the DAM (see Figure 11 and Figure 12, 

respectively). The subgrids can be Fourier transformed efficiently on the GPU as well. Addition 

of the FFTed subgrids to the grid can be done either on the GPU or host CPU of the DAM; in 

our experience, it is somewhat more efficient to perform it on the GPU.  The best place to 

perform the final inverse FFT of the grid is not yet determined: indeed it seems to to depend 

on the image size and on the efficiency of the FFT library for a particular architecture. The best 

place can be the GPU, FPGA, or CPU of the DAM, or even one of the other DEEP-EST 

modules. 

Another reason to run the imager on the DAM is the presence of 3D XPoint DIMM modules, 

which may be used to save huge sky images that do not entirely fit in DRAM. In this case, the 

DRAM transparently caches the “hot” parts of the grid that are stored in the larger-capacity 3D 

XPoint DIMMs. On top of that, the even smaller GPU device memory will be used to 

transparently cache the “really hot” parts of the grid, using NVIDIA's Unified Memory 

technology. The imager is a particularly interesting application to demonstrate the usefulness 

of transparent caching (both 3D XPoint and Unified Memory) as the access pattern to the grid 

becomes complex (but with sufficient locality).  
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5 Task 1.5: Space Weather (KU Leuven) 

The Space Weather application from KU Leuven couples HPDA with HPC. The goal of the 

application is to perform more realistic simulations of the plasma environment of the Earth, 

given the current activity of the Sun. 

In comparison with weather forecasting, our goal is to predict, days in advance, possible 

disrupting events on the Earth to avoid damage to our technology or to the health of exposed 

humans (in particular people aboard airplanes crossing the polar caps and astronauts). 

However, contrary to regular weather, in Space Weather we do not have “weather stations” 

situated between the Sun and the Earth. Satellites collecting in-situ data are mostly located 

around our planet. Information on solar activity is only available with the use of remote sensing 

equipment, including imagers and radiation detectors. 

Machine Learning (ML) techniques are used in the present application to detect correlations 

between the images of the Sun, and plasma conditions measured near the Earth. Spacecraft 

data and solar images are freely available from multiple sources, including the OMNIweb data 

center, the Virtual Solar Observatory, the SDO and SOHO missions, the CACTus CME 

catalog, among many others. The full application can be divided in three main jobs: 

1) The KU Leuven application downloads parts of this data to the SSSM. This data is then 

pre-processed to create a clean set of input and output files used for the training of the 

ML algorithm, using the DLMOS-DPP python package (where DPP refers to data pre-

processing.). This pre-processed data is also stored in the SSSM for future utilization. 

2) The input/output datasets are then used to train the ML model with the DLMOS-training 

python package. This training requires moving the datasets from the disks to the 

processors. The result is the generation of the coefficients of the corresponding trained 

Neural Network (NN). These coefficients are stored in a disk space accessible to 

multiple systems; we suggest using the NAM device for this task. 

3) Using the latest images of the Sun and the latest trained NN model, the DLMOS-

inference python tool creates the initial and boundary conditions for the xPic code. xPic 

is then launched in a Cluster-Booster mode in the CN and the ESB, to perform 

simulations of the Earth’s environment. 

 

Figure 13 presents a global schematic view of the full Space Weather application. Arrows 

represent the data movement among the different elements and the colors identify the different 

modules of the DEEP-EST modular supercomputer prototype. 



D1.3   Application distribution strategy 

25 

DEEP-EST - 754304   29.06.2018 

 
Figure 13: KU Leuven schematic workflow in the DEEP-EST Modular Supercomputing Architecture (MSA). 

Most of the requirements of the two applications, DLMOS and xPic, have been described and 

included in deliverable D1.1, in particular the memory (D1.1-5.2.9) and I/O requirements (D1.1-

5.2.10). 

5.1 Application partitioning 

5.1.1 DLMOS 

The DLMOS software is a python package that contains multiple sub-packages. The three 

main objectives of the software are: 1) download and pre-process the data, 2) use pre-

processed data to train a ML (NN) model, and 3) perform single forecasts given new solar 

images. 

The code is then partitioned in three sub-packages: 

a) DLMOS-DPP, 

b) DLMOS-Training, 

c) DLMOS-Inference. 

The sub-packages are independent, but use data processed from the preceding package. 

5.1.2 xPic 

This Particle-in-Cell code has been partitioned into two solvers: 

1) Field solver: a numerical algorithm that solves Maxwell’s equations for 

electromagnetism in a 3D Cartesian grid. The solver uses an iterative Krylov subspace 

method to solve a large system of linear equations. This method requires the 

computation of a residual every Krylov iteration. Global communications are required 

to keep track of such residual and neighbour communications are required to compute 

the derivatives of the source terms of the linear system. Parallelisation is obtained by 

domain decomposition. 
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2) Particle solver: uses Newton’s equations of motion to compute the movement of the 

billions of charged particles in the system. Collisions and other particle-particle 

interactions are not computed (their interaction is mediated through the 

electromagnetic fields). All particles are independent of each other. The particle solver 

is also parallelised by domain decomposition, so communications are required to move 

particles from one domain to the neighbouring domain when they cross boundaries. In 

addition to the movement of particles, the particle solver also performs the calculation 

of particle statistics called moment gathering. In this last step particle properties are 

projected on the 3D grid of the code and transmitted to the field solver. 

The field solver and the particle solver are inter-dependent and require constant exchange of 

information. However, they show different numerical strategies that can be mapped to different 

hardware architectures. 

5.2 Application mapping 

5.2.1 DLMOS 

The DLMOS application from KU Leuven is characterised by a heavy and continuous 

movement of data from the disk to the processor memory. It requires a good management of 

data movement between the different levels of memory. 

This application also targets the use of such large amounts of data to train a deep neural 

network. This process is based on the constant use of tensor operations (matrix and vector 

multiplications) that can benefit from low compute power with large number of threads, and 

vectorisation. These operations are also relatively fast, so the memory bandwidth needs to be 

high. A more quantitative description of the requirements is not yet available. 

These are the reasons why the DLMOS application from KU Leuven would benefit from the 

large number of cores and higher memory bandwidth proposed for the DAM. 

5.2.1.1 DLMOS-DPP 

The data pre-processing procedure is not based on highly parallel and multi-threaded, 

vectorisable, tensor operations. It requires high per core performance and high memory 

capacity. It also requires the full I/O infrastructure to move the data from disk to the processor. 

Data pre-processing can be implemented on accelerator cards and can also take advantage 

of the host processors of accelerator nodes (like the DAM nodes). 

It would be possible to deploy the DLMOS-DPP sub-package to the CM where memory and 

sequential performances are higher. The final decision on the correct mapping of the DLMOS-

DPP (DAM or CM) will need to be done on the prototype modules. 

As it is today, it is more convenient to maintain the multiple elements of the KU Leuven 

application as close as possible in hardware, using the same module for the DLMOS-DPP and 

the DLMOS-Training sub-packages. 

DLMOS-DPP will take advantage of the different levels of data storage of the DEEP-EST 

system, moving data from the internet, to the FS, then to the SSSM, the local disk, the local 

memory and finally to the processor. This package will generate new enhanced data that need 

to move in the opposite direction, up to the SSSM. 
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DLMOS-DPP can run continuously, processing new data, for multiple applications of multiple 

datasets. It does not depend on the results of any other components of the DLMOS package. 

Parallelism can be achieved by processing multiple inputs at the same time. No data 

communications are required in this package. 

The pre-processing also involves the downloading of data to a local storage space, the 

detection of anomalies, the normalisation of the data, and the selection and building of the 

training datasets for the DLMOS-Training sub-package. 

5.2.1.2 DLMOS-Training 

Training is based on highly parallel multi-threaded vectorisable tensor operations that can be 

deployed on accelerator cards. These operations also require a constant stream of data, thus 

taking advantage of high bandwidth memory. For these reasons the DLMOS-Training sub-

package will be mapped to the DAM. 

This python code takes the processed data from the DLMOS-DPP, stored in the SSSM, and 

performs the training process of the DLMOS Neural Network Models (DLMOS-NNMs). The 

architecture of the DLMOS-NNMs is not yet defined and will be tested during this project. 

Parallelism of the DLMOS-Training will be achieved in three different ways: 

1) Model parallelism: Different accelerators will train different NNMs for the same training 

data, allowing to select and cross-breed the best performing models and achieve good 

convergence to a satisfactory result. 

2) Data parallelism: A single dataset can be divided in multiple smaller datasets that can 

be used to train a model in independent accelerators. 

3) Model parallelism: The NN model is divided in multiple subtasks that can be mapped 

to different accelerators. 

The DLMOS-Training sub-package implements python algorithms for the parallelism methods 

1 and 2, but the method 3 is implemented in the ML framework used (e.g. TensorFlow, Keras, 

PyTorch). For methods 1 and 2 network latency and bandwidth are not a constraint. The 

amount of data and the frequency of communications are very low. 

Method 3 is very restrictive and requires constant data movement of small amounts of data. 

Parallel efficiency is achieved by the package communications algorithm which is not based 

on MPI communications. TensorFlow has shown in recent tests low parallel efficiency using 

multiple GPU node systems. We will study the use of other frameworks as PyTorch and MXNet 

as potential replacements of TensorFlow, in case parallel performances are unsatisfactory. 

The output of the DLMOS-Training sub-package are the coefficients of all the matrices of the 

different NNMs. These coefficients will be stored in the NAM for easy and frequent access from 

multiple different nodes. 

5.2.1.3 DLMOS-Inference 

This procedure is similar to the DLMOS-Training sub-package but requires only one input 

(instead of hundreds of thousands) and produces only one output. The full procedure is 

extremely fast and does not require special hardware components. The sub-package is 

mapped to the ESB. The code takes inputs from two different sources: the SSSM, where recent 

input data has been stored by the DLMOS-DPP, and from the NAM, where the most recent 

NNMs, and their coefficients, are stored. 



D1.3   Application distribution strategy 

28 

DEEP-EST - 754304   29.06.2018 

The DLMOS-Inference code is mapped to the ESB, because it is also the launching point of 

the xPic code. The inference process is very fast and requires minimum resources, so it is not 

necessary to use the DAM for this procedure. 

DLMOS-Inference will generate the output that will be stored in local disk and used by the xPic 

initialisation tool to create the initial and boundary conditions of the code. 

5.2.2 xPic 

The code xPic will be run in the Cluster-Booster mode using the CM and the ESB. All I/O is 

performed from the ESB. 

5.2.2.1 xPic initialisation 

Data from the DLMOS-Inference will be read and interpreted by this python script that belongs 

to the xPic code. The script will create the initialization files for the code. It will write one field 

file (up to 1 GB of data for the largest cases) and a particle file (up to half a TB for the largest 

cases). The files will be written in the file system of the ESB. The files will be read from all the 

allocated ESB nodes. 

5.2.2.2 xPic particle solver (booster) 

The particle solver of xPic performs very fast calculations on a very large number of 

independent particles. The data of each particle is stored in memory aligned vectors in 

memory. Such vectors contain information about the particle location, velocity and charge. 

Memory aligned temporal vectors are used to store the projected values of the electric and 

magnetic fields on the particle. 

All vectors are fitted in cache memory, aligned and ready for SIMD vector operations. The 

operations are basic multiplications and additions. All the conditions in this problem point to a 

system which is highly parallel and independent. This code will benefit from a system with a 

large number of cores with access to very high memory bandwidth. Following our past 

developments in the DEEP and DEEP-ER projects we decided to map the particle solver to 

the ESB. 

The SLURM batch script calls the particle solver of xPic, pinning this executable to the 

allocated processors of the ESB. The particle solver can run using multiple OpenMP threads. 

Each MPI process in the particle solver spawns a child on the CM containing the executable 

of the field solver and creating an MPI interconnector between the parent and the child 

processes. 

5.2.2.3 xPic field solver (cluster) 

The field solver requires the resolution of an iterative linear system. It also requires performing 

finite-element differential operations on a Cartesian grid. The differential operations require the 

communication of data between neighbouring processors and the iterative method requires 

the global gathering of a residual value (the difference of the result between two iterations). 

These procedures are complex and require high performance in a single thread. Memory 

access is not necessarily cache optimised. Two communication patters stress the system in 

different ways. But the amount of data transferred between processors in not very high. The 

field solver of xPic is mapped to the CM to take advantage of the per-thread performance.  
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The field solver is spawned, from the particle solver, in the CM and receives information from 

the particle solver via MPI communications. The field solver does not perform any type of I/O. 

Communications between the field and the particle solver are performed using a point-to-point 

MPI intercommunication less frequently than communications inside each one of the solvers. 

The message size is about ten times the size of the Cartesian grid in each MPI process. For a 

typical run of 10x10x10 cells per MPI process, the message size between the CM and ESB 

modules is around 80 KB.  
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6 Task 1.6: Data analytics in Earth Science (UoI) 

6.1 Introduction 

The following subsections contain a brief introduction of each of the three data analytics 

approaches for selected machine learning applications driven by the University of Iceland that 

take advantage of the DEEP-EST modular supercomputing architecture. 

6.1.1 HPDBSCAN 

Highly Parallel Density-Based Spatial Clustering of Applications with Noise (HPDBSCAN) is 

an unsupervised clustering algorithm implementation tailored for high performance computing 

to cluster points of data. It is specifically used to cluster point-cloud datasets acquired using 

airborne and hand-held laser scanners. The algorithm is highly optimised, with fast HDF5 I/O, 

exhibiting both strong and weak scaling properties, but it has so far been limited to datasets 

which do not exceed a few GBs. In DEEP-EST, we are expanding the algorithm to support the 

clustering of arbitrarily large input datasets that do not fit in RAM. We will demonstrate the 

improved algorithm´s effectiveness by performing clustering on a point-cloud dataset in the 

range of several terabytes. This in turn will lay the foundation for Level of Detail (LoD) and 

Continuous Level of Importance (cLoI) studies on the dataset. These methods give 

researchers the opportunity to "zoom" into the big data, i.e. to study and analyse specific areas 

of the datasets using different resolutions, enabling the clustering of different attributes for the 

same area or object, e.g. form clusters of individual houses, or cluster the windows of a specific 

house. 

6.1.2 PiSVM 

PiSVM is a parallel Support Vector Machine (SVM) implementation using kernel methods and 

MPI for inter-process communications. It is a supervised learning algorithm we use to perform 

land-cover classifications on both hyper-spectral and multi-spectral remote sensing input 

datasets obtained by satellites. The datasets are labelled and have been feature engineered 

to get better classification accuracy and to speed-up the training process. The dataset sizes 

are of a wide range, ranging from several hundred MBs up to the terabyte scale, for example 

when considering time series of remote sensing images (e.g. change of land cover over time). 

The algorithm is currently undergoing improvement in terms of a fast-parallel HDF5 support 

and a Cascade SVM version to better scale for massive datasets. The prototype 

implementations are ready and are expected to be tested, integrated, and fully operational 

before Q4 this year. 

6.1.3 Deep Neural Networks 

We employ Deep Neural Networks (DNNs) for both supervised and unsupervised learning on 

multi-spectral remote sensing datasets collected by satellites such as those use by the PiSVM 

described above.  Convolutional Neural Networks (CNNs), a special form of DNN, are trained 

to perform classification tasks or other unsupervised learning tasks on remote sensing image 

datasets ranging from several hundred megabytes to several terabytes. Model inference with 

an exclusive test dataset is used and an additional approach of transfer learning is one 

application goal as well. 
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6.2 Application partitioning 

The work of each of the three applications can be broken down into partitions as described in 

the following subsections in order to take advantage of the modular supercomputing 

architecture by distributing the loads on several modules. 

6.2.1 HPDBSCAN 

The core partitions of HPDBSCAN are those related to the pre-processing of the input data, 

the actual clustering algorithm (i.e. local clustering and global merge) and storing its results. 

The data selection partition, used for further data analysis and processing, is optional. 

6.2.1.1 Data pre-processing 

In this phase, the point-cloud dataset is first spatially divided by a hyper-grid overlay, with 

equally sized cells of the same dimension as the points in the dataset. The point-cloud dataset 

is then divided equally among the processes and each point is sorted into its respective cell. 

Afterwards, the sorted list is stored, and a heuristic is applied to attempt to load-balance the 

data-grid by dividing it into chunks that fit in RAM, i.e. the total number of executions (and the 

cell span of each) is determined so that the whole grid can be processed without overwhelming 

the available hardware resources. The heuristic attempts in particular to divide the dataset into 

equally sized execution tasks with respect to the number of point comparisons but only being 

able to select any cell in whole, i.e. no partial cell selections are possible.  

After the data has been divided, each chunk, with the addition of boundary halo cells from 

adjacent chunks, is processed sequentially by the HPDBSCAN algorithm. 

6.2.1.2 Partition pre-processing 

Upon execution, the chunk which is being processed is divided into further smaller chunks 

equal to the number of MPI processes, where a similar load-balancing heuristic as described 

in the section above, i.e. the hyper-grid cells are divided among processes, trying to keep the 

number of point comparisons for each process as close as possible. 

6.2.1.3 Local parallel DBSCAN 

Each MPI process performs a local DBSCAN clustering on its assigned cells, using OpenMP 

for shared memory parallelism. Hence, clusters that span different MPI processes are not able 

of being detected in this step and as a consequence a merging approach is performed in the 

next step. 

6.2.1.4 Merge clusters 

After clustering, the locally obtained cluster labels are passed among the MPI processes to 

make sure that clusters spanning over multiple cells receive the same unique global cluster 

label. This is done with selected rules in the algorithm. 

6.2.1.5 Results and resiliency 

Previous versions of HPDBSCAN were not particularly robust as they did not include any 

measures to increase the application’s resiliency. This was not really necessary because the 

limit on the size of the point-cloud datasets also limited the execution time to such a degree 

that a system failure would never be very cost-intensive. For larger datasets such as those 

expected in the exascale era, this needs to be changed. We thus apply a simple but effective 
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measure to add resiliency to the HPDBSCAN application by storing calculated cluster labels 

to the persistent memory, taking advantage of the inherent compartmentalization of the 

computation offered by the dataset hyper-grid overlay, and allow the execution to restart after 

the last stored data. In effect, we are adding check pointing to the application. 

6.2.1.6 Data selection 

When applying Level of Detail (LoD) or continuous Level of Importance (cLoI) studies, it is 

possible to modify the point-cloud, e.g. zoom in/out, and perform clustering on sub-set 

selections of the original dataset, possibly using a new hyper-grid overlay. This in turn may 

result in various clusters in memory on different data sets that may be often re-read depending 

on zoom levels. Therefore, it makes sense to store clustered datasets of sub-sets into 

persistent memory for detailed studies by scientists. 

6.2.2 PiSVM 

The application is divided into four partitions described in the following subsections. 

6.2.2.1 I/O 

For training, the feature engineered labelled HDF5 input dataset is read in parallel by numerous 

processes. The input dataset has been feature engineered to increase the likelihood that the 

model convergences, and to reduce the overall computation time by skipping features that 

have otherwise little or no effect on the training process. Therefore, feature engineering usually 

is performed with the goal of increasing the accuracy. But as different feature engineering 

techniques are usually applied, the input datasets change from time to time. 

6.2.2.2 Training 

PiSVM Training is performed iteratively on the non-linear input data, processing one sample 

at a time using sequential minimal optimisation (SMO), but using the so-called “kernel-trick” to 

linearly separate the data in a higher dimension space. The aim is to construct a model which 

can be used for classification with a high accuracy. This phase is computationally expensive, 

generally requiring very many samples to be able to achieve good classification accuracy. 

6.2.2.3 Validation 

Validation is a process in machine learning for model selection that in turn is not only related 

to the right model (e.g. SVM, neural network, Random Forest, etc.) but also their parameters. 

A non-linear SVM is used in conjunction with RBF kernels (i.e. with kernel parameter gamma) 

and soft margins (i.e. allowed cost of error parameter), therefore an exhaustive search must 

be made, e.g. using a 10-fold cross-validation, to determine those input training parameters 

that give the best training results. This is typically performed via a grid search over the 

parameters and is a process that is embarrassingly parallel, i.e. nicely parallel. Depending on 

the number of parameters the overall computing time could be quite significant, but the different 

runs do not require interaction between them. 

6.2.2.4 Inference 

Model inferencing in PiSVM is an embarrassingly parallel, i.e. nicely parallel, operation that 

performs predictions using an otherwise unseen labelled dataset which can be used to 

determine model’s accuracy. Furthermore, when a model exhibits good accuracy, it can then 

finally be used for making classifications on new unseen datasets. 
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6.2.3 Deep learning 

The deep learning application uses partly the same dataset as PiSVM for supervised learning 

to allow for a comparative study of the different machine learning approaches. For 

unsupervised learning, however, different multi-spectral datasets are explored. The application 

uses state of the art deep learning for image pattern recognition, namely Convolutional Neural 

Networks (CNNs) that are known for detecting spatial properties in data. 

6.2.3.1 I/O 

The application uses principally the same input datasets as the PiSVM application does. 

However, it uses the raw, non-feature engineered datasets whilst PiSVM uses a processed 

version of it because feature engineering. The reason is that 'feature learning' is an intrinsic 

part of deep neural networks in general and CNN in particular. In future, also other datasets 

will be used, e.g. to support Sentinel satellite data provided by the European Copernicus 

remote sensing programme. This dataset offers enormous volume, with over 23 Terabytes of 

new data per day, and requires exascale computing when performing land cover analysis at 

large scale over time. 

6.2.3.2 Training 

Training is performed using CNNs since we are mostly handling remote sensing image input 

data. Additionally, Stochastic Gradient Descent (SDG) and back-propagation are used as 

standard techniques employed during the training phase. Due to the multi-spectral nature of 

the input datasets, a 3D CNN is used which is a special form of regular CNNs that can better 

take advantage of the multiple input data dimensions (2D spatial data with multiple spectra).  

6.2.3.3 Inference 

The trained models acquired in the previous subsection are evaluated by measuring their 

prediction accuracy on previously unseen input data and thus inferring their suitability for 

further training. Finally, the trained models can be used for making classifications on new (and 

even unlabelled) datasets. 

6.2.3.4 Transfer learning 

After a neural network model has been trained and tested, that model can be re-used, even in 

parallel by multiple users, as a foundation for additional training on other datasets using 

transfer learning techniques. The simplest technique involves making an incision in the neural 

network next to the output layer and adding more layers in-between, prior to fresh training. 

There are also known existing pre-trained networks (e.g. OverFeat) that make sense to have 

available in the persistent memory for different application use cases. Each network mostly 

consists of a matrix of weights in multiple dimensions, i.e. for each layer, but memory-footprint 

can nonetheless be significant when deep learning architectures are used. 

6.3 Application mapping 

The distribution to the different modular supercomputing architecture (MSA) modules 

described below represents specifically selected mappings. In fact, further mappings to the 

MSA modules are thinkable: machine learning techniques with training, testing, and validation 

offer many possibilities per application to use the characteristic of the MSA. In this sense, this 

deliverable can only capture a couple of possible application mappings. Note that the figures 
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abstract some important concepts used by our applications (e.g. NAM, persistent DIMMs, etc.) 

for the sake of providing a better overview, but these details are described in the text. 

6.3.1 HPDBSCAN 

We present two different HPDBSCAN workflow mappings, A and B, onto the DEEP-EST MSA, 

see Figure 14 and Figure 15 and their step-by-step description in the subsections below. We 

do not know yet, which workflow will offer HPDBSCAN more benefits, therefore we intend to 

implement and evaluate both workflows in order to be able perform a comparative study. Other 

mappings are possible but not described in detail here for the sake of conciseness, e.g. it could 

make sense to have the indexed data sets in persistent memory as well once indexed. 

The main difference of the workflows A and B is that workflow A uses for data storage the 

Network Attached Memory (NAM) located in the Extreme Scale Booster (ESB) module, but 

workflow B uses the non-volatile memory (NVRAM) locally available in each node of the Data 

Analytics Module (DAM). This selection affects the rest of the workflow due to an intrinsic cost-

factor associated with the gateway interconnects between the modules. 

 
Figure 14: HPDBSCAN schematic workflow A in the DEEP-EST MSA. Note that the dashed lines represent 
optional flows. 

 
Figure 15: HPDBSCAN schematic workflow B in the DEEP-EST MSA. Note that the dashed lines represent 
optional flows. 



D1.3   Application distribution strategy 

35 

DEEP-EST - 754304   29.06.2018 

6.3.1.1 Load, sort and index data 

The dataset is loaded from the file-system in parallel by numerous processes where each 

process is assigned an equal sized chunk of data. Each data-point is sorted into its respective 

grid cell in the overlaying hyper-grid. Subsequently, the sorted data and relevant metadata is 

written to the persistent storage. 

 Workflow A uses the NAM as a persistent memory target. Furthermore, it uses the 

Global Collective Engine (GCE) to speed-up MPI communication between the many-

core processes in the ESB and the NAM. 

 Workflow B uses the NVRAM in the DAM as a fast storage target, and its CPUs or 

optionally its FPGAs to sort the data. 

6.3.1.2 Cluster and Merge Data 

The Cluster Module (CM) reads a partition of the stored, sorted dataset in parallel using a load-

balancing heuristic that assigns cells to processes (i.e. ranks) via MPI. Each process clusters 

its data locally, using as well OpenMP to speed-up the clustering in a hybrid parallel processing 

style. Finally, the clusters are merged together in parallel, using MPI collectives for inter-

process communication. The CM module is best suited for clustering and merging, a 

computationally expensive and non-embarrassingly parallel task, as it contains the fastest 

CPUs and for non-embarrassingly parallel tasks a good interconnection too. 

6.3.1.3 Store Cluster Labels 

The obtained merged cluster labels are stored in the persistent memory, and if applicable, the 

clustering process is repeated in the CM with a new data chunk. 

 Workflow A stores the computed cluster labels in the NAM, and as mentioned 

previously, uses the GCE to speed-up MPI communication as much as possible. 

 Workflow B stores the labels in the NVRAM of the DAM. 

6.3.1.4 Data Selection 

In the case of Level of Detail (LoD) or continuous Level of Importance (cLoI), a subset of the 

dataset can be selected for further study. 

 Workflow A performs the selection in the ESB module on the data stored in the NAM, 

possibly utilizing the NAM´s FPGA to further speed-up the selection process. 

 Workflow B performs the selection in the DAM on the data stored in the NVRAM, 

possibly utilizing the FPGAs to facilitate the selection process. 

6.3.2 PiSVM 

As with HPDBSCAN, we will carry out a comparative study on two different possible mappings 

of the PiSVM application onto the DEEP-EST MSA, see Figure 16 and Figure 17 and their 

step-by-step description in the following subsections. The main difference between the two is 

that workflow C uses the NAM in the ESB module as a storage target and the CM for training 

the machine learning model, whereas workflow D uses the NVRAM in the DAM and uses the 

ESB module only for inference. 
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Figure 16: PiSVM schematic workflow C in the DEEP-EST MSA. Note that the dashed line represents an 
optional flow extension. 

 
Figure 17: PiSVM schematic workflow D in the DEEP-EST MSA. Note that the dashed line represents an 
optional flow extension. 

6.3.2.1 Cross-validation  

Cross-validation determines the best parameters with regards to the maximum accuracy in all 

the folds across all parameter spaces. 

 Workflow C performs the cross-validation using both the CM and the ESB module. 

Cross-validation is made up of computationally expensive mutually exclusive parallel 

operations, which therefore naturally leads us to select the CM with its powerful CPUs. 

However, the NAM in the ESB module will be used as a fast storage target, also 

including the possibility of taking advantage of the FPGA to select the best parameters 

values calculated by the CM. 

 Workflow D performs the validation in the DAM with data stored in the NVRAM. It will 

explore the usage of the DAM´s FPGAs to enhance this phase. 

6.3.2.2 Model Training 

In this part, the two workflows differ substantially: our goal is to include a comparative study of 

powerful CPUs with gateway interconnects between different MSA modules versus slower 
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CPUs within the same module to determine limiting factors in the DEEP-EST heterogeneous 

MSA. 

 Workflow C uses the CM for model training, putting its powerful CPUs to good use, and 

fetching data from the NAM in the ESB module. 

 Workflow D continues using the DAM, which has slower CPUs but keeps the data 

stored in the local NVRAM, as well for training. 

6.3.2.3 Model Inference 

Testing with PiSVM is an embarrassingly parallel operation, i.e. nicely parallel. It does not 

require powerful CPUs, nor powerful interconnects, and thus the ESB module is well suited to 

fit the task, with its many-core CPUs. 

6.3.2.4 Model Storage 

Storing the models obtained in the earlier steps, differs for the two workflows mappings as 

follows: 

 Workflow C stores both the input datasets and output models in the NAM, which resides 

in the ESB module. 

 Workflow D stores both the input datasets and output models in the NVRAM, which 

resides in the DAM. 

6.3.3 Deep learning 

The deep learning application has two alternative workflows planned (see Figure 18 and Figure 

19 and their subsequent description) where both use the DAM and ESB modules, but with 

different mapping to these modules. These two mappings will be compared and studied to 

determine the pros and cons with each approach, with the goal of creating an efficient 

execution pipeline to train and test neural networks on the DEEP-EST system. 

 
Figure 18: Deep neural network schematic workflow E in the DEEP-EST MSA. Note that the dashed lines 
represent optional flow extension. 
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Figure 19: Deep neural network schematic workflow F in the DEEP-EST MSA. Note that the dashed lines 
represent optional flow extension. 

6.3.3.1 Model Training 

Training neural networks is a time-consuming task, in particular convolution and matrix 

operations benefit from powerful hardware accelerators such as GPGPUs and specialised 

software frameworks such as TensorFlow, Keras, PyTorch, or other. In DEEP-EST we will be 

comparing the usage of both CPUs and GPGPUs for training using two different workflows. 

We chose the TensorFlow platform with the Keras extension for our application as it combines 

ubiquity and simplicity with a strong support community. 

 Workflow E stores the training samples in the NAM in the ESB module and therefore, 

it logical to use its many-core module for training, using an optimised version of 

TensorFlow intended for CPUs and AVX-512 instructions. 

 Workflow F stores the training samples in the NVRAM in the DAM, and its powerful 

GPGPUs are perfectly suited for training neural networks. 

Note that multiple models, with slight or major variations, can be trained concurrently using 

both workflows. 

6.3.3.2 Model Inference 

Model inference is done with an exclusive dataset used only for testing the model´s accuracy. 

Our plan is to execute inference in parallel to training, in a different module to better exploit the 

system´s computational capabilities.  

 Workflow E uses the DAM´s GPGPUs for inference. 

 Workflow F uses for inference the many-core CPUs with AVX-512 instructions as 

provided by the ESB module. 

6.3.3.3 Model Storage 

After training and inference, the models are either stored in the NAM of the ESB module, or in 

the NVRAM of the DAM. It is not clear at this moment which approach is better suited to 

enhance the application and therefore both will be explored and evaluated. This applies to both 

deep learning workflows, E and F.  
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7 Task 1.7: High Energy Physics (CERN) 

7.1 Introduction 

The Compact Muon Solenoid (CMS) detector is a general-purpose particle detector consisting 

of several components: tracker, electromagnetic and hadronic calorimeters, magnet and muon 

systems. Each component (usually addressable as sub-detectors) accomplishes a different 

task. For instance, tracker (both Pixel and Strip parts) is the closest sub-detector to the 

interaction point and responsible for identifying the trajectories of charged particles. 

Calorimeters measure energy depositions of the particles passing through. 

Two different applications will be evaluated on the DEEP-EST Modular Supercomputer 

Architecture (MSA): CMS event reconstruction and event classification. Event reconstruction 

is the Compact Muon Solenoid Software framework (CMSSW) data processing pipeline aiming 

to reconstruct a full LHC collision event (more on CMSSW was provided in D1.2). Event 

classification is an analytics workflow, which aims to train several Machine Learning (ML) 

models and perform a multi-event classification. 

7.2 Application partitioning 

7.2.1 CMS Event Reconstruction 

The process of reconstruction consists of three consecutively applied stages: digitization, local 

and global reconstruction. Each stage has a mix of GPU and CPU based algorithms. Some 

parts are being ported to OpenCL to be able to utilise the FPGAs to be provided with the MSA. 

7.2.1.1 Digitization 

Upon recording the response of the CMS detector, physics data is packed in a highly efficient 

binary format that requires unpacking before it can be dealt with. The actual content of this 

format is the raw electrical signals that correspond to the amount of digitized charge. 

Digitization is the first phase in the reconstruction chain. 

7.2.1.2 Local reconstruction 

In order to perform physics analysis, it is necessary to reconstruct actual physical quantities of 

interest that physicists can further work with. Therefore, digitized signals are converted (or 

reconstructed) into physical quantities such as energy, time and position. This conversion is 

performed on a per sub-detector base. 

Local reconstruction applies to a particular component of the CMS detector (sub-detector). For 

instance, a hadronic calorimeter contains thousands of channels and energy deposition, within 

each is computed a sophisticated regression procedure. Regression algorithms are typically 

implemented using third party libraries (e.g. Eigen) which incorporate optimised linear algebra 

routines. However, certain functionality has to be manually ported to CUDA/OpenCL in order 

to preserve the algorithm itself and utilise heterogeneous resources provided with the MSA. 

7.2.1.3 Global reconstruction 

Global reconstruction is the process of combining information from several components of the 

CMS detector in order to build high level physics objects such as electrons, photons, jets, etc. 
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This operation drastically improves the precision of the measurements of properties of high 

level objects. 

7.2.2 Analytics: multi-event classification 

A typical Machine Learning (ML) pipeline consists of three phases: feature engineering, model 

training (including cross-validation) and evaluation (inference). 

7.2.2.1 Feature engineering 

In a typical ML application, input data does not correspond one-to-one to the model’s input. 

Therefore, a certain transformation algorithm has to be applied in order to prepare the input in 

a certain format. Apache Spark is used to perform Extracting Transforming and Loading (ETL) 

operations. The transformation involves taking collections of various particles (photons, 

electrons, etc.) and building an abstract two-dimensional image representing an event. 

7.2.2.2 Model training 

The model training phase is usually the most time-consuming part of the analytics workflow. 

At the current stage, GPUs provide the highest performance. 

7.2.2.3 Model evaluation 

Upon completing the training phase and finding the appropriate hyper parameters, inference 

is performed. The input data needs to be split at the previous stage so that a classifier does 

not see the data on which the inference is to be performed. The goal is to find the model giving 

the highest classification accuracy. 

7.3 Application mapping 

7.3.1 CMSSW 

 
Figure 6: CMSSW Event Reconstruction in the DEEP-EST Modular Supercomputer Architecture (MSA). 

Given that a typical data processing job is embarrassingly parallel, the absence of either inter-

process (IPC) or remote-process (RPC) communication together with the goal of increasing 

the throughput by utilising heterogeneous resources implies that this application will be running 

only on the Data Analytics Module (DAM).  
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Current work on porting Pixel Tracking and Calorimeters algorithms to GPUs will allow 

exploiting the use of heterogeneous resources within the CMSSW reconstruction chain. The 

workflow contains internal hybrid parts and some of them run on the CPUs while others run on 

GPUs. 

7.3.2 Analytics 

 
Figure 7: Event Classification in the DEEP-EST Modular Supercomputer Architecture (MSA). 

The feature engineering step must run on the DAM due to the enlarged memory capacity and 

presence of 3D Point DIMMs. This will allow in-memory data analytics at a much higher 

throughput compared to other modules. Training part is targeted to run on the DAM due to the 

presence of GPUs. In the particular case of Deep Learning (DL) models, the training time is 

reduced significantly when using GPUs as they provide much higher level of parallelism for 

matrix operations. 

The final step of the application is the model evaluation. The input dataset is split into several 

parts and, for inference, data not seen by the classifier must be used. Therefore, the input for 

the inference stage is the trained model itself and a subset of preprocessed features. It is worth 

mentioning that the model evaluation can start even before the training completes.  The training 

of several models can be performed in parallel: some can finish training earlier and GPU 

resources should be left to the training stage only. 

Furthermore, considering that model evaluation constitutes an embarrassingly parallel 

problem, the Extreme Scale Booster (ESB) with large number of core counts will be well suited 

for the last stage of analytics application. The most time consuming and compute intensive 

stage is the model training. As a consequence, GPU resources (in the DAM module) will be 

fully utilised by this step and, therefore, will not be available for the inference part. For the 

purpose of testing and evaluation, it will be informative to also consider using GPU resources 

for training and, at the same time, FPGA resources (from the DAM module) for inference, 

provided that the CPU cores (from the DAM module) are not fully saturated and are capable 

to feed both accelerators: this could prove an interesting option for Machine Learning 

workloads.   
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8 Global conclusion 
The objective of this document is to detail how applications are mapped into the DEEP-EST’s 

Modular Supercomputing Architecture. For this purpose, each application needs to be properly 

dissected into its logical parts matching a particular module of the MSA so they can be 

executed therein much more efficiently. This global conclusion gives a brief summary of the 

most important aspects regarding application mapping into the MSA: 

 NMBU’s interest on the MSA is the ability to perform “in-situ” analysis (post-treatment) 

of large-scale brain activity while the simulation runs in the background. In order to 

achieve this, the simulator application NEST will run on the CM and communicate 

through the MPI-based library MUSIC to either of the two post-processing applications 

Arbor/HybridLFP or Elephant (ASSET), which will run on the ESB or the DAM modules, 

respectively. This will demonstrate how the MSA allows real-time analysis as opposed 

to today’s current practice that consists of running the analysis “only” after the 

simulation phase has finished. 

 NCSA has identified two main executable parts of their application GROMACS. The 

first one, which calculates the motion of particles based on forces acting on them, uses 

efficient SIMD kernels for vector operations and therefore is most suitable for the many-

core architecture that will integrate the ESB module. On the other hand, the second 

executable part of GROMACS performs three-dimensional FFTs that often work better 

on high-frequency cores, such as those found on the CM module (or DAM). Therefore, 

GROMACS will greatly benefit from running on the ESB and DAM modules 

simultaneously, which will result in an efficient overlapping of real-space calculations 

(on the ESB) with Fourier-space calculations (on the CM), leading to a significant 

decrease of the application runtime. 

 Due to energy constraints and the seeking of maximum performance, GPUs and 

FPGAs fit best for ASTRON’s applications; hence, their focus is mainly placed on the 

DAM. Nevertheless, the modularity of the MSA will allow overlapping FPGA design 

creation, carried out on the CM, with actual FPGA calculations performed 

simultaneously on the DAM. In addition, this will constitute an opportunity for ASTRON 

to experiment with new technologies integrated in the DEEP-EST project such as Intel’s 

3D Xpoint persistent memory in order to manage large sky images. 

 KU Leuven’s software environment consists of two applications, i.e. a deep learning 

application (DLMOS) and a numerical simulator (xPic), each of which can be partitioned 

in several executables targeting a different module of the MSA. KU Leuven 

contemplates to fully use the MSA: (i) data pre-processing and deep learning training 

is carried out in the DAM; (ii) these trained models will be executed on the ESB to 

create the input for the particles solver of the simulator xPic, also executed in the ESB; 

and (iii), the CM will be used for xPic’s fields solver, which will be in constant exchange 

of information (via MPI) with the particles’ solver running simultaneously on the ESB. 

Figure 13 clearly illustrates how the MSA will speed up KU Leuven’s workflow. 

 Overall the machine learning applications developed by UoI offer many choices to 

utilise the MSA. For example, two different workflows are envisaged for HPDBSCAN, 

one putting more emphasis on the ESB using local NAM, and the other on the DAM 

using local NVRAM. For the piSVM application another two workflows are proposed, 

which essentially differ on the way they fetch or store the data they manipulate. Finally, 

the deep learning application developed by UoI will be mapped into the ESB and DAM 
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modules considering two alternative partitions. All these six workflows are really 

interesting and clearly show the potential of the MSA for this type of machine and deep 

learning applications. Moreover, UoI is committed to explore and compare these 

various approaches in order to select the best candidates. 

 The first workflow presented by CERN shares some similarities with ASTRON’s 

approach: to get the maximum performance-energy ratio with the aid of GPUs 

integrated in the DAM. The second one is a typical data analytics workflow, which runs 

much more efficiently on GPUs (DAM). However, the last stage of data analytics, 

namely model evaluation or inference, can be carried out on either the CM or the ESB 

modules, thus allowing overlapping tasks to speed up computations, similarly to what 

KU Leuven proposes with their DLMOS application workflow. 

8.1 Next steps 

The next deliverable of WP1 entitled “Application initial ports” is due at month 24 of the project. 

During this period of one year, application developers must ensure the correct mapping of their 

applications into the DEEP-EST prototype. Moreover, results of application runs on equivalent 

hardware (SDVs) will also be detailed, comparing performance with previous versions of the 

code and other platforms using the benchmarks described in D1.22. 

The successful porting of the applications during this period of time will involve a close 

collaboration with other work packages. In particular, with colleagues of WP5 who are in charge 

of (SLURM) job scheduling policies, in order to ensure the correct allocation of heterogeneous 

resources across different modules of the MSA. The cooperation with WP6 will also be crucial 

to ensure that applications use the programming environment being developed in the context 

of the DEEP-EST Project to fully support the MSA. 
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List of Acronyms and Abbreviations 

A 

AARTFAAC:  The Amsterdam-ASTRON Radio Transients Facility And Analysis Center; 

a LOFAR-based, all-sky radio telescope 

API: Application Programming Interface 

ASTRON: Netherlands Institute for Radio Astronomy, Netherlands 

 

B 

BN: Booster Node (functional entity) 

BoP: Board of Partners for the DEEP-EST Project 

BSC: Barcelona Supercomputing Centre, Spain 

BSCW: Repository used in the DEEP-EST Project to share all project 

documentation. 

 

C 

CERN: European Organisation for Nuclear Research / Organisation Européenne 

pour la Recherche Nucléaire, International organisation 

CM: Cluster Module: with its Cluster Nodes (CN) containing high-end general-

purpose processors and a relatively large amount of memory per core 

CMS: Compact Muon Solenoid experiment at CERN’s LHC 

CMSSW: Compact Muon Solenoid Software framework  

CN: Cluster Node (functional entity) 

CNN: Convolutional Neural Networks 

CPU: Central Processing Unit 

 

D 

DAM: Data Analytics Module: with nodes (DN) based on general-purpose 

processors, a huge amount of (non-volatile) memory per core, and 

support for the specific requirements of data-intensive applications 

DDG: Design and Developer Group of the DEEP-EST Project 

DEEP: Dynamical Exascale Entry Platform (project FP7-ICT-287530) 

DEEP-ER: DEEP - Extended Reach (project FP7-ICT-610476) 

DEEP-EST: DEEP - Extreme Scale Technologies 
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Dimemas: Performance analysis tool developed by BSC 

DIMM:  Dual In-line Memory Module 

DSP: Digital Signal Processor 

DN: Nodes of the DAM 

DNN: Deep neural network 

DRAM: Dynamic Random Access Memory. Typically describes any form of high 

capacity volatile memory attached to a CPU 

 

E 

EC: European Commission 

ESB: Extreme Scale Booster: with highly energy-efficient many-core 

processors as Booster Nodes (BN), but a reduced amount of memory per 

core at high bandwidth 

EU:  European Union 

Exascale:  Computer systems or Applications, which are able to run with a 

performance above 1018 Floating point operations per second 

Extrae: Performance analysis tool developed by BSC 

 

F 

FFT: Fast Fourier Transform 

FMA:  Fused Multiply Add; an operation of the form A * B + C 

FP7: European Commission 7th Framework Programme 

FPGA: Field-Programmable Gate Array, Integrated circuit to be configured by the 

customer or designer after manufacturing 

 

G 

GCE: Global Collective Engine, a computing device for collective operations 

GFLOP/S: Gigaflop, 109 Floating point operations per second 

GFLOPS/W:  Giga (10^9) Floating-Point Operations per Second per Watt, or 

alternatively: Giga Floating-Point Operations per Joule 

GPU: Graphics Processing Unit 

GROMACS: A toolbox for molecular dynamics calculations providing a rich set of 

calculation types, preparation and analysis tools 
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H 

H2020: Horizon 2020 

HBM: High Bandwidth Memory 

HDL:  Hardware Description Language 

HPC: High Performance Computing 

HPDBSCAN: A clustering code used by UoI in the field of Earth Science 

HW: Hardware 

 

I 

Intel: Intel Germany GmbH, Feldkirchen, Germany 

I/O: Input/Output. May describe the respective logical function of a computer 

system or a certain physical instantiation 

 

J 

JUELICH: Forschungszentrum Jülich GmbH, Jülich, Germany 

 

K 

KNL: Knights Landing, second generation of Intel® Xeon PhiTM 

KU Leuven: Katholieke Universiteit Leuven, Belgium 

 

L 

LHC: Large Hadron Collider (LHC), the world’s most powerful accelerator 

providing research facilities for High Energy Physics researchers across 

the globe 

LLNL: Lawrence Livermore National Laboratory 

LOFAR: Low-Frequency Array, an instrument for performing radio astronomy built 

by ASTRON 

 

M 

MPI: Message Passing Interface, API specification typically used in parallel 

programs that allows processes to communicate with one another by 

sending and receiving messages 

MSA: Modular Supercomputer Architecture 
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N 

NAM: Network Attached Memory 

NCSA: National Centre for Supercomputing Applications, Bulgaria 

NEST: Widely-used, publically available simulation software for spiking neural 

network models developed by NMBU. 

NMBU: Norwegian University of Life Sciences, Norway 

NN: Neural Network 

NUMA: Non-Uniform Memory Access 

NVM: Non-Volatile Memory. Used to describe a physical technology or the use 

of such technology in a non-block-oriented way in a computer system 

 

O 

OmpSs: BSC’s Superscalar (Ss) for OpenMP 

OpenCL: Open Computing Language, framework for writing programs that execute 

across heterogeneous platforms 

OpenMP: Open Multi-Processing, Application programming interface that support 

multiplatform shared memory multiprocessing 

 

P 

Paraver: Performance analysis tool developed by BSC 

ParTec: ParTec Cluster Competence Center GmbH, Munich, Germany. Linked 

third Party of JUELICH in DEEP-EST 

PCIe:  Peripheral Component Interconnect Express; a bus that is often used to 

connect CPUs to GPUs, network devices, etc. 

piSVM: Parallel classification algorithm 

PME: Particle-mesh Ewald 

PMT: Project Management Team of the DEEP-EST Project 

 

R 

RAM: Random-Access Memory 

 

S 
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SCR: Scalable Checkpoint/Restart. A library from LLNL 

SDV: Software Development Vehicle: HW systems to develop software in the 

time frame where the DEEP-EST Prototype is not yet available. 

SIMD: Single Instruction Multiple Data 

SIONlib: Parallel I/O library developed by Forschungszentrum Jülich 

SKA: Square Kilometre Array 

SSSM: Scalable Storage Service Module 

SVML:  The Short Vector Math Library 

SW: Software 

 

T 

TCP:  Transmission Control Protocol; a reliable, stream-based network protocol 

TFLOP/s: Teraflop, 1012 Floating point operations per second 

Tk: Task, Followed by a number, term to designate a Task inside a Work 

Package of the DEEP-EST Project 

 

U 

UDP:  User Datagram Protocol; an unreliable, packet-based network protocol 

UoI: Háskóli Íslands – University of Iceland, Iceland 

 

W 

WP: Work package 

 

X 

xPic Programming code developed by the KULeuven to simulate space 

weather  

 

 

 


