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Executive Summary

This deliverable presents the main objectives and results for WP2. This includes the DEEP-
EST benchmark suite created in Tk2.1, the evaluation of the scheduling policies proposed in
WP5 done in Tk2.2, the analysis of the main application characteristic influencing performance
scalability based on the performance models created in Tk2.3 and the energy models for the
different CPUs and GPU in the DEEP-EST prototype as well as their validation done in Tk2.4.

The work done by Tk2.1 concerning the benchmark suite includes the definition of the bench-
marking strategy, the integration of synthetic kernels and WP1 applications in JUBE, the cre-
ation of a set of tools to manipulate the DB information and the automatic generation of graphs
using experiments results. The synthetic kernel selection has been done to evaluate the main
architectural components in the DEEP-EST system. We will show we are not only providing a
benchmark suite but a complete workflow for automatic systems evaluation: integration, com-
pilation, execution and analysis. The DEEP-EST benchmark suite could be adapted to be used
in other projects.

The evaluation of a modular system is a new topic in the context of scheduling evaluation
because it significantly differs from the traditional HPC environments. Three main contributions
have been provided in the this project concerning modular systems evaluation: the specification
of a new trace file format for modular systems, the specification of a methodology to create
modular traces using already existing workload models, and the specification of new metrics
to evaluate systems when running workflows. We will present the extensions in the Modular
Workload Trace File presented in D2.1 with the additional fields introduced during the project.
The whole format is included in one appendix of this document. In D2.2 we already presented
the first version of our trace file generation methodology when we evaluated the module list
contribution. In this document, we introduce the complete strategy including the module list and
workflows. Finally, we have defined the set of metrics to be used when evaluating the dynamic
management of dependencies in workflows. Traditional HPC metrics apply to individual jobs
and do not reflect the impact of workflow optimizations.

In this document we will compare performance metrics in two types of cluster: when running
in conventional (homogeneous) systems compared with a modular system. This evaluation will
be done from an architectural point of view and without considering the contributions proposed
in WP5. Results demonstrate the significant benefits of a modular system approach in terms of
wait time and response time. The benefit is not only because of the modular architecture itself
but also because of the design of the modules themselves. The fact the ESB is less expensive
compared with traditional CPU+GPU nodes combined with traditional CPU nodes reduces by
more than a factor of 10 the wait time and response time of jobs executed in the modular system
compared to same workload executed in homogeneous systems.

The second set of results evaluates the benefits of the dynamic management of workflow de-
pendencies. Results will show performance benefits in the execution of jobs belonging to work-
flows with no penalty in the rest of the workload. The evaluation of the dynamic management of
dependencies in workflows shows promising results by improving the workflow response time
because of the overlap between components. In the case of traditional jobs we are able to
provide some overlapping in workflows without penalizing the rest of the jobs whereas when
using heterogeneous jobs we also improve global metrics because we reduce the reservation
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of resources.

In the context of performance models, the contribution is threefold. First, we present an analysis
methodology to evaluate whether parallel applications make an efficient use of the resources,
as well as to study the factors that hinder scalability. This methodology is based on the BSC
efficiency model that characterizes an application with just a few efficiency factors that measure
the main bottlenecks of parallel applications: data transfer, load balance and serialization is-
sues, among others. This is applicable to homogeneous, hybrid and modular applications and
we used it to conduct in-depth analyses on five codes with different use cases. Second, with
the objective of gaining insight of the application’s performance on the large scale, we extend
the measurements taken from real runs, ranging from few hundreds to few thousand processes,
with extrapolation analyses to project the aforementioned efficiency factors to larger scales, so
as to foresee the potential scalability problems the applications may encounter. Since our pre-
dictions go very far from the real measurements, we use execution traces to corroborate the
observations and drive a deeper analysis to understand the sources of efficiency loss. Lastly,
we provide advice on how the applications could improve scalability. We support these ideas
with simulated scenarios that estimate the benefits of the proposed changes, mostly targeted
at removing imbalances, reducing dependency chains and accelerating key kernels. The anal-
yses demonstrate that having access to a modular architecture helps to overcome software
limitations. One of the examples shows how redistributing the application’s components across
the DEEP-EST modules would report significant benefits compared to an homogeneous run.
Moreover, we also observe that some applications are very sensitive to small variabilities or
system noise that propagate through the communications and perturb many processes. So re-
thinking the communication patterns to minimize dependencies and increase the application’s
asynchronism, as well as applying techniques such as computation-communication overlap to
mask MPI costs, will be important to mitigate these effects that will increase in the exascale.
Another hint for application developers, already exploited in DEEP-EST, is to promote the use
of accelerators not only to speed up the computations, but also to achieve better balance and
increased efficiencies in key parts of the code.

Finally, this deliverable includes the final version of the energy models for the different archi-
tectures and the validation of these models with some parallel kernels. The Energy benchmark
and corresponding scripts have been adapted to the number of cores, sockets etc as well as
specific performance metrics in the case of CPUs and fully migrated to NVIDIA GPUs. The
average error when projecting from the different frequencies has been initially computed using
a subset of the experiments reserved for this specific purpose. A deeper validation has been
done with single-node applications. For validation, we have used the NAS Parallel Benchmarks
BT-MZ, SP-MZ and LU-MZ in the three modules. These kernels have been executed with all the
frequencies and performance counters and energy readings have been collected using DCDB.
Projected energy shows an average error bellow 10% in all the cases.
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1. Introduction

This deliverable includes the description of the main contributions of WP2 regarding the DEEP-
EST benchmark suite, the evaluation of scheduling policy, the scalability analysis of some appli-
cations done with the performance models and the energy models for the different architectures
as well as their validation.

Section 2 presents the final status of the DEEP-EST benchmark suite. The work done con-
cerning the benchmark suite includes the selection of a set of synthetic kernels to evaluate, as
much as posible, the relevant hardware characteristics existing in the project. These kernels
have been integrated in the benchmarking tool JUBE and all the scripts to automatically exe-
cute them and collect the performance metrics have been created. The frequency of execution
have been adapted to the project requirements, being more frequent al the beginning to iden-
tify performance variations due to changes in the software stack or the hardware. An important
effort has been made in the integration of WP1 applications. In that case, the benchmark suite
only includes the latest version of applications but given most of them have been significantly
modified to be ported to the new architecture in some cases the integration effort had to be
invested twice. The automatization of the execution of experiments saves time, but it is even
better when the data analysis is also simplified. to support this, we have also included the uti-
lization of DBs in the global strategy of benchmarking evaluation. The goal of this task is not to
present application results because an exhaustive per-application analysis will be included in
D1.5. However, we have include some graphs to demonstrate the usefulness of the benchmark
suite to both identify performance problems because of changes in the environment (software
stack or hardware configuration) and the performance evaluation when varying the application
use case (number of processes, input data, etc).

Section 3 includes all the contributions to do a system evaluation and the evaluation itself. All
experiments have been performed using simulations and the BSC-SLURM simulator has been
used as in the previous deliverables. Contributions related to the setup of the experiments in-
clude extensions to support heterogeneous jobs, the integration of the dynamic management
of dependencies in workflows, and the extension of the workload trace file generation method-
ology to support workflows with the API proposed. We also present the extensions we did in
the modular trace file format to include energy metrics. The evaluation has been divided in
two parts: first we have evaluated the benefits of a modular system compared to a conven-
tional system. We have done this evaluation comparing three homogeneous scenarios (with
2CPU nodes, 2CPU+GPU nodes and 1CPU+GPU nodes) vs a modular system (2CPU and
1CPU+GPU nodes). The system sizes for each scenario have been determined assuming a
maximum cost, where a 2CPU node costs 1unit, one 2CPU+GPU costs 2.5 units and one 1-
CPU+GPU costs 1 unit. We have used the same percentage of accelerated nodes (70%) vs
non-accelerated (30%) nodes as in the prototype. Using performance ratios provided by WP1
applications, we have adapted the execution times included in the trace files to take the different
architectures into account.

The second set of experiments investigates the benefits of using the dynamic management of
dependencies in workflows. This contributions makes the execution of workflows in this environ-
ment more dynamic reducing the wasted time of resources when running heterogeneous jobs
and minimizing the wait time between components of the same workflow when using traditional
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jobs. We call this new technology Dyn-WF and it reports performance benefits for workflows
without penalyzing the rest of the jobs.

Section 4 includes a deep analysis of several applications from WP1: GROMACS, xPIC,
NEST+Arbor and NextDBSCAN. Given there was only one modular application, we also deploy
and evaluate EC-EARTH. With this set of applications we cover different use cases (strong and
weak scaling), and programming models (MPI, OpenMP, CUDA). NEST+Arbor and EC-EARTH
are complex use cases since they combine different programming models and binaries, pos-
ing a challenge both from the technical point of view of the tools supporting all these diverse
components together, and from the analysis point of view of interpreting how each individual
component impacts the global efficiency of the application.

Based on execution traces, we conduct efficiency and extrapolation analyses which provide on
the one hand, an easy characterization of the application’s good use of the resources summa-
rized in a few efficiency factors, and on the other hand, preliminary hints about the application’s
scalability and which element hinders it the most. With this information, we have analyzed in de-
tail the sources of efficiency loss, and have simulated scenarios where the identified problems
are minimized or even removed to evaluate the benefits of potential improvements.

Our conclusions are both hints to help application developers to improve the efficiency of the
next versions of their applications, as well as to help application users to select proper configu-
rations and resources to maximize the efficiency of their experiments.

It is also worth mentioning that given the limited size of the prototype some conclusions can be
affected by the reduced size and number of samples.

Finally, section 5 includes the methodology to create energy models, the energy models for the
CPU and GPU in the DEEP-EST architecture and the validation of these models. The validation
has been done using a subset of the experiments generated by the energy benchmark and the
NAS Parallel Benchmarks. We have also included a deep analysis of the average error when
projecting energy from different frequencies to the rest of frequencies. The validation with
benchmarks have reported average errors slightly bigger than the preliminar evaluation with
the mini kernels of the energy benchmark but always below the standard 8% and in average
4.91%.
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2. Benchmarking

Benchmarking by itself is a very broad topic. One needs to define the purpose of benchmark-
ing upfront. Otherwise, one can easily end up with spending most time with technicalities for
producing potentially statistically identical results.

In the course of Tk2.1, there were a lot of benchmarks integrated. Initially, it was not completely
clear, which benchmarks would lead to changes in the performances. One could just perform
educated guesses at that time. The hope was to measure a possibly wide scope of the hard-
ware and software characteristics to see as many significant system changes as possible. In
addition, the parameter space of the benchmarks needed to be set up as large as possible
to increase the probability of measuring interesting effects. On the other hand, benchmarking
inherently is taking resources from users who could have potentially performed other tests in
the meantime. The more benchmarking is performed the smaller is the amount of resources
available to the users of the system. This is a complex high dimensional optimization task.

The constant and frequent benchmarking of the system lead to several situations where prob-
lems of the hardware or the software could be found in an early stage. The reason for that is
that the benchmarks were testing inherently large parts of the software stack by using it. In
this sense benchmarking was contributing significantly to the stability and functionality of the
system by communicating these problems as early as possible. The benchmark suite is acting
as a unit testing framework for the prototype hardware and software from the perspective of the
user.

With increasing amount of benchmarks and partitions the amount of maintenance was increas-
ing. The main reason for the enduring maintenance efforts was the prototype status of the
system in question. This was leading to a race between finding and solving problems occur-
ring while running a benchmark and the need for integrating new benchmarks for these new
partitions.

2.1. Benchmarking Guide

Due to its versatility and complexity, one can get easily lost within the topic of benchmarking.
Therefore, a clear guide of how to work on a benchmark suite is a result by itself of this task
potentially simplifying future efforts for developing benchmark suites. The guide presented
here was mainly developed by the efforts within the DEEP-EST project. The guide needs to
be refined depending on the specific situation for which it is going to be used in the future.
Nevertheless, it strives for as much generality as possible.

The topic of benchmarking can be separated into the following parts. There is a part of how
to define the workflow of integrating a benchmark into the benchmark suite. Another part is
the workflow of one single benchmark execution which also defines the structure of a single
benchmark. Finally, the benchmarking infrastructure, which is given by the benchmark suite
minus the single benchmarks, is a topic which needs special care and is going to be considered
within this deliverable.
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2.1.1. Benchmark Infrastructure

When integrating a benchmark suite it is natural to start right away with single benchmarks.
While this is a valid approach and leads to first quick results it also leads to the problem of
single benchmarks lacking for uniformity. This is especially true if there are a lot of benchmark
prototypes developed by application developers and submitted to the benchmark suite main-
tainers. This will make the process of creating a benchmark infrastructure, which is going to
be needed to execute the benchmarks on a regular basis, a very cumbersome and error prone
process.

On the other hand, even if uniformity is achieved at the beginning of the process of integrating
the benchmarks there will be another benchmark at some time with a workflow, which does
not fit into the uniform structure. Furthermore, without first having integrated first benchmarks
it is difficult to extract the relevant parts which a benchmark infrastructure will need. An enu-
meration of the elements needed for a benchmark infrastructure has the advantage of making
a benchmark suite developer able to develop the benchmark infrastructure before the bench-
marks are developed. This enables a clearer structure of the single benchmarks and a better
integration into the benchmark suite with a smaller amount of errors.

With a functional benchmark infrastructure the application developers, which are naturally not
motivated to submit incomplete or non-optimized application code significantly earlier than the
end of the project, will have the motivation of being able to measure their progress improving the
application. This performance change over time is automatically monitored and takes this part
of the work away from the application developer. On the other, hand the application developers
have the opportunity to analyse on a regular basis whether some changes in the prototype
improved or reduced the performance of their application. This information can be fed back to
the system administrator or the system software developers to ensure a specific performance
of the applications.

From the experience of the DEEP-EST project the following parts are considered to be needed
for a benchmark infrastructure.

• How to execute a benchmark? There are several ways to execute a single benchmark
by itself. The tool of choice within the DEEP-EST project is JUBE, see [31]. But one can
also script a benchmark execution by use of a bash script. Also Python and ReFrame,
see [26], would be possible alternatives to do this.

• How to store the system environment at execution time? Once the benchmarks
are running regularly the results will likely show step functions. On the other hand, the
existence of a maintained changelog is not guaranteed. In conclusion, storing the system
environment as verbose as possible is a way of how to track changes on the system and
relating them to steps in the performance plots.

• How to integrate new benchmarks? Since the different styles of the application de-
velopers to integrate benchmarks are leading to a large complexity of the benchmarking
infrastructure and even more efforts to the application developers this is an important
question to answer. Naturally, one wants to simplify the work of the benchmark suite and
application developers. A tool for creating prototypical benchmarking scripts would be a
solution to that. This reduces the efforts for the application developers and ensures a spe-
cific form of the benchmarking scripts reducing the complexity needed for the benchmark
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infrastructure. A potential solution is to offer sample JUBE scripts and an introduction into
JUBE. Nevertheless, application developers submitted scripts which were significantly di-
verging. This effect is likely due to the different workflows of the applications and need
to be kept in mind. Since the development of the applications is ongoing, the collabori-
ation with the application developers also continues. The applications are changing and
the benchmarks are potentially breaking. They need to be maintained by the benchmark
suite developers and the application developers over the whole project duration.

• How to ensure functionality and quality? A software project of this type includes a lot of
people with a large potential for fast growing. Such type of projects should be equipped
with a unit testing framework. Since the programming tools used are very diverse, the
definition of the unit testing methodology is not trivial. Error code throwing and catching
should be performed strictly on all levels of programming and scripting languages. Even
parts which never broke in the past should be considered. If this is not possible, the unit
tests should be extended aggressively every time when something breaks. The unit test-
ing framework by itself needs to be versatile and running on a machine or infrastructure
one level above the bash terminal of the used system (here the DEEP-EST prototype).

• How to schedule the benchmarks? On the DEEP-EST prototype we are using Slurm as
a job scheduler. Nevertheless, just submitting the benchmarking jobs is not goal oriented
for a benchmark suite. One has to develop some infrastructure one layer above Slurm to
define dependencies of the benchmark executions. Furthermore, special care needs to
be taken to define runtimes and conditions for cancelling benchmark executions if there
are arising any problems or any unforeseen behaviour.

• How to handle errors? This is a very important point! In a prototype environment parts
of the benchmark suite are breaking regularly since the benchmark suite opts for mea-
suring as many parts of the system as possible given the constraints. If there is an error
occuring this can stall the execution of all other benchmarks leading to a lack of results.
Error handling taking into account as many error sources as possible, will increase the
stability of the benchmark suite execution and therefore the stability of result delivery. Fur-
thermore, one should think about a notification strategy in cases of errors. An automatic
mail to the corresponding application developer could trigger and even speed up recovery
of the benchmark suite result delivery and avoid an error which is not recognized. This is
especially important if the benchmark suite is growing so large such that one cannot have
a look at all results anymore manually and therefore an error could possibly not be found
for a long time of regular benchmark execution.

• How to make the benchmark infrastructure portable? Different platforms are allowing
for different ways of how to solve things. Or they could even use different schedulers. To
enable comparison to other platforms special care needs to be taken here into account
to allow for easy porting. One way how to achieve this is to separate all platform specific
attributes into a configuration structure which is the only thing to be changed when porting
a benchmark to another platform.

• How to archive the results? A stable, defensive and safe archiving of the results is
mandatory. One could easily loose this topic after having a working benchmark. So this
has to be taken into account for ensuring the availability of the benchmarking results for
a long time frame.
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• How to analyse the results? With the sheer amount of data produced by a bench-
marking suite the need for automatized result analysis is mandatory to extract as much
information as possible. A strong recommendation is a visualisation tool and an automatic
notification when errors are being produced. The automatic notification is needed since
it is almost impossible to have a manual look at all benchmarks with all parameter per-
mutations to filter out which parts were not running in the last benchmark iteration. But
more elaborated strategies of what to do with the data could lead to interesting results
and even more outcome of a benchmarking suite.

2.1.2. Benchmark Integration Workflow

Having a clear picture in mind on how to integrate benchmarks can simplify the task of mea-
suring interesting changes significantly. At least, having a clear picture in mind builds a starting
point for adapting a benchmark integration workflow for another project. Therefore, one should
picturise such a benchmark integration workflow which is going to be explained in depth in the
following.

Goal 
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Benchmark 
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and Result 
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Figure 1.: Benchmark Integration Workflow

The benchmark integration workflow starts with the goal analysis. A short list of potential goals
is given by the following and can be extended depending on the situation and the background.

• Monitoring of functionality of the system and/or the benchmarking software

• Monitoring of performance changes

• Comparison of different systems

• Stressing the system/simulation by creating artificial production conditions
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• Single performance measurements

• Creating an environment to reproduce complex errors

Then a specific goal should be chosen and defined. Without this step the benchmark suite
can easily grow exponentially in functionality not being needed. From this goal analysis follows
directly the goal definition by choosing the goals of interest.

After having defined the goals of the benchmark suite a benchmark research needs to be
performed. Which functionality will the benchmarks need and are there already benchmarks
available to fulfil these goals? If the needed benchmarks are not available, they need to be
developed at this step. In the context of the application benchmarks the application developers
need to perform these developments.

The next step is the benchmark definition or selection. This is based on the benchmark re-
search and the benchmark development performed before. This is followed by the benchmark
acquiring step. In the case of publicly available synthetic benchmarks this step is just given
by a download. For the case of the application benchmarks a repository needs to be defined
which can be accessed frequently by the benchmark suite and will be updated frequently by
the application developer. For the case of non-publicly available benchmarks it is questionable
whether they are, at all, a suitable choice to be used. Benchmarking is inherently a comparison.
This comparison can be done in time. But it also can be done with respect to different research
groups or different systems. If the second case is foreseen, non-publicly available benchmarks
should not be chosen. If they are chosen to be integrated into the benchmark suite, one needs
to make sure that the goals can be achieved under the terms of this non-public benchmark.

As the next step is about benchmark testing, we try to compile, find proper software combina-
tions to load in before compilation, test some parameters of the benchmarks and the benchmark
suite and have a first look at execution results. For the case of the application benchmarks it
frequently happens that the application developers have set up a private software environment
or hard coded some paths into the scripts and software they use for developments. This step
can take a significant amount of work and can lead to often fallbacks to the benchmark acquir-
ing step since changes need to be made by the application developers. At this step also some
knowledge about the parameters and their influences should be studied. Another important
point is here to get an overview of runtimes for specific parameter values and to be able to
estimate them.

Having performed first tests and knowing how to execute a benchmark in general the next
step is the result definition. Results can be performance in some application specific metric,
runtime, energy consumption or anything else. This needs to be defined for every benchmark
independently. A complete list of possible results cannot be stated here since it depends on
the synthetic benchmarks and applications at hand at the time when the benchmark suite is
developed. Which results are useful to be measured has to be studied case by case. The
result definition should be en par with the goal definition. Furthermore, the parameter space
needs to be defined. This is a delicate topic since a benchmark suite opts to measure as
much as possible but the dimensions of the parameter space can easily blow up leading to
a monopolising of the prototype which is definitely not wanted. Also the amount of possible
parameters to measure depends on the runtime of the parameter permutations and the overall
amount of benchmarks to be performed and on the time which is allocated for the regular
benchmarks.
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As a next step the benchmark execution strategy should be defined. When and how often
should the benchmarks be performed? Are they performed in parallel or in a serial mode? For
example, for the case of an IO benchmark accessing the same file system, it depends on the
goal of the benchmarks whether they should be performed in parallel or in a serial mode. How
often is the software going to be compiled? For a large amount of application benchmarks the
compilation can take significant amounts of time. On the other hand, one wants to perform
compilations as often as possible to take a picture of the current software state.

From all these considerations a benchmark suite with its infrastructure can be developed such
that the specific benchmark is integrated into this benchmark suite. Depending on the function-
ality supported this can lead to significant efforts. Especially in the case of multiple partitions
specific parameter choices could lead to a need to handle them completely different.

Once this is done the benchmarks can go into production. The results need to be monitored
and analysed frequently. This leads to conclusions. These conclusions can just be about the
system status and configuration or they can lead to a need for changing parameter definitions or
even result definitions since one could realise that the results are not describing specific effects
happening on the system. So here is also a loop where after the conclusion one could end up
at the result definition step again working the way to the conclusion step. Another result from
the conclusion could be that a communication needs to be initiated with application developer,
system administrator or other people maintaining the software or the hardware of the prototype
to resolve a problem seen through the use of the benchmark suite.

2.1.3. Benchmark Execution Workflow

Right at the beginning of a project where many developers are involved to deliver single bench-
marks for a whole benchmark suite it is advantageous to define the typical benchmark exe-
cution workflow. Having this defined, in before the developments, can lead to typical steps of
the benchmark execution. This will conclude into equal or comparable structures for the single
benchmarking scripts.

In addition, these steps of a typical benchmark execution can also be used to create a tool for
making prototypical benchmark execution scripts. This again decreases the divergence of the
benchmark execution scripts. The goal here is to make the benchmarking execution scripts as
comparable as possible in view of their structure leading to a significantly easier development
of the benchmarking infrastructure. If the benchmark application developers start directly from
benchmark execution scripts which have comparable structure it is much easier to automa-
tize the usage of the most current application benchmark within the benchmark infrastructure
workflow.

From the DEEP-EST project there were typical steps extractable from the available benchmark
execution scripts. Of course in some cases additional steps could be needed since bench-
marking is a broad topic. These steps described here are more a first starting point to define a
benchmark execution workflow for a given benchmark suite. After first analyses, this definition
of a benchmark execution should then be updated for every benchmark suite being integrated.

The execution workflow, figure 2, starts with loading required software modules. For the DEEP-
EST prototype and the production machines at JSC this is typically the loading of a lua file
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Figure 2.: Benchmark Execution

describing the updates of the environment to use preinstalled software. Already at this point, it
is mandatory to define whether to load the default modules or whether to manually update the
concrete version number of loaded software versions within the benchmark execution scripts.

As a next step one could download the current source code of the application or the synthetic
benchmark. Depending on the system configuration here first issues can come into play. The
repository could not be reachable without an ssh key or on the compute nodes. Furthermore,
one has to assure that the original repository is regularly maintained by the original developer.

The next step is the compilation step. The compilation can be very fast or can take a very
long time. This has to be considered when planning the workflow. For some application, like
in the DEEP-EST project, the compilation was already performed depending on a parameter.
In such cases these compilation steps would not be considered as a compilation. It would be
implicitly performed within the step of the execution of the benchmark since there the parameter
expansion is coming into play.

After having loaded the modules and performed the compilation and directly before the exeuc-
tion of the benchmarks the system environment configuration should be stored. The existence
of a maintained changelog is not guaranteed. The regular archiving of this changelog, if it
exists, is neither guaranteed. Therefore, one likely needs to take care of this step within the
benchmark suite. This is an important step to be able to correlate system environment changes
to changes in the performances of the benchmarking results afterwards.

As a next step the execution of the benchmark is performed. Here the compiled binaries are
called with different parameter permutations. For the sake of potentially saving time if there is
a reservation in place for the benchmark executions, it is important to not extract any results
at this point. The result extraction step can take a lot of time since a lot of small files need to

DEEP-EST - 754304 22 31.03.2021



D2.3 Benchmarking, evaluation and prediction report

be opened and analysed. High performance parallel file systems are not optimized to do such
operations quickly.

After having executed the benchmarks it will likely happen, especially for a prorotype, that errors
are occurring. This leads to some complexity for the benchmark execution workflow and needs
to be taken into account. Depending on the benchmark suite integration and the goals some
errors can be handled in a clear way. One recommendation concluded from this project is to
perform some automatized reporting like writing a mail to application or benchmark developer
that the benchmark did not succeed. This was especially useful since the complexity of the
benchmark suite was growing immensely. Every automatizable step needed to be automatized
very aggressively to have time left for further developments. At this point, when one chooses to
write automatic mails, one should also take into account to somehow summarize the occurring
errors into a small amount of mails. Otherwise every parameter permutation could lead to one
mail.

In conclusion, outside of the reservation, if it is available, the results can be extracted and
collected. The collection can be performed by use of a database. Here it needs to be analysed
which type of results are expected and which type of database would be useful for such a
case. This database would then need to be archived. Since data loss happens, especially for
prototype systems, this step can easily be forgotten, but is as important as the steps before.

As a last step the results need to be postprocessed. This can be defined depending on the
needs of the project. It just can mean the preparation of the results for a visualisation tool. It
can also be some sort of complex and elaborated data analysis. Since a lot can be done with
the data, this is a whole research topic by itself.

2.2. Benchmarking Suite

A benchmark suite should be considered as a solution to a given problem under given condi-
tions. This is due to the fact that depending on the goals, one would like to achieve, different
workflows will be needed to be implemented into the benchmark suite. Therefore, the bench-
mark suite delivered here within the DEEP-EST project is exactly this. There were specific
boundary conditions which needed to be fulfilled. The reservation timeframe, the functionality
of cron jobs and the availability of a user specifically created for performing the benchmarks
are a subset of the boundary conditions being relevant for this benchmark suite.

2.2.1. Benchmarking Strategy

The benchmarking strategy is mostly the same as stated in teh deliverable D2.1, see [2], of the
DEEP-EST project. The extensions and alternations due to technical reasons are communi-
cated within this section.

The frequencies of the benchmarks, which are the numbers of runs per week, are depending
on the benchmark by itself. Initially, it was foreseen to run the synthetic benchmarks on a daily
basis while the application benchmarks are meant to be running on a weekly basis every Sat-
urday to avoid disturbances of developments on the prototype. As the amount of benchmarks
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was growing the frequency of the synthetic benchmarks needed to be reduced to still fit into the
daily reservation timeframe. This means that the frequency of the synthetic benchmarks is at
least given by one per week depending on the benchmark in mind but in every case not given
by 7 times a week.

Due to the amount of benchmarks integrated the compilation time became a significant contri-
bution. In connection with the need for a large availability of the prototype for the early access
users and for other developing and testing the compilation time had to be reduced. Therefore,
recompilation of the executables was performed on the 1st of every month.

At communication by application developers, software developers, software stack maintainers
or system administrators of a potentially interesting new development within the software stack,
a change of the loaded modules was initiated within the benchmarks. This is due to the situation
of having a default software stack and a development software stack. Both software stacks are
needed to offer stable software versions while enabling the usage of current developments on
the prototype.

To increase the amount of information gathered for every benchmark run system environment
information was gathered for the benchmark runs. For this we developed an extra script. The
results produced by JUBE were stored into a database. The files of the benchmark runs with
the raw information and the database is backed up every evening.

Some efforts were performed to make the benchmark suite portable to the old JURECA cluster
module. But this system was decommissioned end of 2020. Following the benchmark suite
and the benchmarking scripts line by line it is easy to port the benchmarks for another system.
But no special efforts were made to collect system dependent information within separate files
to make it especially comfortable to port from one system to another. When performing a
porting of a benchmark to another system still there needs to be a parameter optimization
performed. This step is a complex one and should be performed by a human. Since the
parameter optimization is also dependent on the goals defined by the benchmark suite this
step is very difficult to automatize.

2.2.2. Synthetic Benchmarks

Synthetic benchmarks are synthetizing different hardware usage types of applications running
on a system. This has the advantage of being able to perform tests on parameter spaces which
are not covered by the applications at hand. Furthermore, they are defining a common basis for
comparable benchmarking results for different systems. At last, they are potentially lightweight
in the software dependencies and variable in the parameter spaces which can be chosen for
execution. These characteristics make them ideal for regular execution on systems to assess
the current status and to detect potential problems.

The set of synthetic benchmarks publicly available have a tendency to focus on monolithic
and common systems. There is a need for developing modular synthetic benchmarks for non-
monolithic system structures when MSA is going to be the reference for future high performance
clusters. Furthermore, synthetic benchmarks for novel hardware like NAM and FPGA cards
need to be developed and maintained. Here the field of available software is very sparse since
modular systems with complex architectures for the modules are not yet common.
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The synthetic benchmarks being part of the benchmark suite are given as follows.

• h5perf: An IO benchmark measuring file system performance and allowing for different
data write and read patterns, see [38, 2]

• hpcc: A collection of benchmarks including hpl, DGEMM, stream, PTRANS, RandomAc-
cess, see [39]

• hpcg: Performance benchmark based on solving a dirichlet boundary condition problem,
see [40]

• hpl: Performance benchmark for the solution of a system of equations by use of an LU-
Decomposition, see [41]

• hpl4cuda: Performance benchmark like hpl including GPUs and using CUDA to harness
their compute power, see [42]

• ior: IO benchmark for writing and reading files and measuring the performance of these
operations, see [43, 2]

• mdtest: Benchmark for measuring metadata performance of a file system, see [43, 2]

• mpiLinkTest: Measuring network bandwidths when sending messages between tasks,
see [44, 2]

• mpiLinkTestCrossPartition: A flavor of mpiLinkTest enabling inter partition communica-
tion, see [44]

• mpiLinkTestGPU: A flavor of mpiLinkTest measuring bandwidth when sending data from
one GPU to another GPU of another node by use of CUDA, see [44]

• stream: Measurement of the performance of operations on data on memory of a node,
see [45]

The chosen parameters for all the benchmarks are stated within the appendix. As an example
for the parameters chosen the mpiLinkTest benchmark is discussed here. The mpiLinkTest
benchmark measures bandwidth performances when sending data between two tasks by use
of MPI. This benchmark is performed on every partition.

Due to partitions and other technical considerations the parameter permutations can take com-
plex dependencies. Therefore, a superset of the potential parameter permutations is printed
into the tables of potential parameters. To clarify this: For every parameter value of one pa-
rameter within the parameter tables there exists a parameter permutation being part of the
benchmark. This also means that all arbitrary parameter combinations are not necessarily
integrated into the benchmark suite. When one needs to know whether the concrete param-
eter permutation in mind is being measured one needs to have a look into the results of the
benchmarks.

The parameters of the mpiLinkTest can take the following values.

For example, on the cluster module the number of nodes is ranging from 1 to 32 in the given
discretization as stated within table 1 whereas on the DAM partition the number of nodes par-
ticipating in the benchmark cannot be 16 or 32 since there are only 8 nodes on this partition
connected to Extoll or Fabri3.
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Parameter Set X

Parameter Set Y

Parameter A

Parameter B

Potential values of 
only B in X+Y

Potential values of 
only A in X+Y

Figure 3.: Visualisation of the parameter sets and how they are mapped into the parameter
tables of this deliverable.

nodes 1,4,8,16,32
taskspernode 2
AllToAll 0
Warmup 2
Randomized 0
Size 1,16384,4194304
Iterations 1000
Serialized 0,1

Table 1.: Potential Parameter values of the mpiLinkTest Benchmarks

The message size is another important parameter here. The value of 1 is optimized for mea-
suring the pure latency of the benchmark as exact as possible since the amount of data com-
municated is almost vanishing. On the other side when increasing the message size as much
as possible the effect of the latency becomes more and more negligible leading to the mea-
surement of the pure bandwidth of the network connection.

As an example for benchmarking results, the results of the mpiLinkTest benchmark are given
by the runtime in seconds and the maximal, minimal and average bandwidth in MB/s.
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2.2.3. Application Benchmarks

The application benchmarks are defining a representative set of software and their demands to
the hardware of future MSAs needed.

• ASTRON/Correlator: Correlation of tens of hundreds of receivers measuring signals
from space, see [2]

• ASTRON/Imager: Creating sky images from the data created by the correlator, see [2]

• CERN/CMSSW: An event data model and services needed by simulation, calibration,
alignment and reconstruction modules that process event data of particle-particle colli-
sions within particle accelerators, see [2]

• KUL/xPic: Particle in cell code for the detailed simulation of the plasma environment of
the planets with the aim of predicting space weather, see [2]

• NCSA/GROMACS: Simulation of multi body systems by use of molecular dynamics, see
[11, 2]

• NMBU/NEST: Modelling of brain tissue as an abstract collection of neurons, see [8, 2]

• NMBU/Arbor: Compartmental neuron simulations through input from NEST, see [9, 2]

• UoI/piSVM: An implementation of a parallel support vector machine used to classify
hyper-spectral data of natural and man-made land covers via supervised learning, see
[2]

• UoI/HPDBSCAN: A highly parallel implementation of the established DBSCAN clustering
algorithm, see [12, 2]

As an example for the parameters of an application benchmark the GROMACS application for
simulating multi body systems by use of molecular dynamics can be discussed. Throughout the
project duration new GROMACS versions were published. These were integrated into the reg-
ular benchmarking procedure. Correspondingly the topology files were updated. Furthermore,
there were three multi body system being benchmarked through the project duration which are
given by Magainin, Bombinin and Ribosome.

The amount of compute nodes and MPI tasks per node were varied. To avoid an oversubscrip-
tion of the sockets the maximal amount of MPI tasks times the number of threads per MPI task
was below 48 for the cluster module. This is an example for the boundary conditions restricting
the set of possible parameter permutations.

The result of a benchmark execution is defined by the performance in nanoseconds simulated
for the molecule per day of simulation time and by the simulation time in seconds.

2.2.4. Benchmark Integration Status

The benchmark integration progression status is described by the benchmarks to be integrated
and the partition permutations to be integrated for. This is best described by two tables stating
all the status for the synthetic and the application benchmarks (Table 3 and 4).

The status are defined as follows.
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Molecule Magainin, Bombinin, Ribosome
GROMACS Version 2018.4, 2019.3, 2019.6, 2020.1
# Compute Nodes 1,2,4,8
# MPI Tasks per Node 1,4,8,12,24,48
# Threads per MPI Task 1,2,3,4,6,8,12,24,48

tprfile
magainin.tpr,magainin-2019.tpr,
bombinin.bombinin-2019.tpr,
ribosome.tpr,ribosome-2019.tpr

Table 2.: Potential Parameter values of the GROMACS Benchmarks

hhhhhhhhhhhhhhhhhhhhBenchmark

Concurrent Partitions
CM DAM ESB CM & DAM & ESB

mpiLinkTest + + + /
mpiLinkTestGPU / + + /

mpiLinkTestCrossPartition / / / +
ior + + + /

h5perf + + + /
hpl + + + /

hpl4cuda / + + /
hpcg + + + /

stream + + + /
mdtest + + + /
hpcc + + + /

Table 3.: Status of the synthetic benchmark integrations. Multiple partitions stated in the
header of a column are representing a benchmark execution on multiple partitions.

• + means integrated: The partition permutation for the benchmark was integrated into the
benchmark suite.

• / means unplanned: The partition permutation for the benchmark was not planned.

The curse of dimensionality is clearly coming into play here leading to quite some effort to
integrate all the benchmarks into the suite. The options for the benchmark driver add even more
complexity to this merging and adapting process. Another source of complexity comes from
the different workflows and different styles of writing benchmarking scripts such that unified
JUBE scripts could not be collected which again does not allow for fully automatized integration
workflows.
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hhhhhhhhhhhhhhhhhhhhBenchmark

Concurrent Partitions
CM DAM ESB CM & ESB

NEST + unplanned / /
Arbor / / / +

GROMACS + + + /
Correlator / + + /

Imager / + + /
xPic + / / +

piSVM + / / /
HPDBSCAN + / / /

CMSSW / + + /

Table 4.: Status of the application benchmark integrations. Multiple partitions stated in the
header of a column are representing a benchmark execution on multiple partitions.

2.3. Benchmarking Evaluation

Right at the beginning of the project benchmarks were integrated to monitor the system for a
potential performance change. It was not clear which benchmarks would deliver that. So, there
are a lot of plots just showing statistical variations.

Furthermore, the sheer amount of benchmarks being performed makes it very difficult to have
a look into all plots and to discuss them all. Within this chapter the interesting benchmarking
results, which were found at a first analysis, are visualised and discussed.

For future projects a benchmarking task of this complexity could be accompanied by a data
analysis task developing methods to extract interesting behaviour within the data. Automatically
extracting useful information from a large amount of data generated is a field of research which
is growing immensely.

2.3.1. mpiLinkTest

The average bandwidths for the mpiLinkTest benchmark for a serialised execution strategy and
for a message size of 4096 KB with two tasks per node is given in figure 4.

Before May 10 2020 the average bandwidth is maximal for one node and decreases for increas-
ing number of nodes participating the benchmark execution. After June 28 2020 the average is
minimal for the number of nodes equal to 1, which are participating the benchmark execution.
For increasing number of nodes the average bandwidth has a tendency to grow. Clearly some-
thing happened on the prototype between May 10 2020 and June 28 2020. Both averages of
the bandwidths, before and after the step, have a tendency to converge to the same value for a
high number of nodes.

Having a look into the kernel information files of both mpiLinkTest runs on these both days the

DEEP-EST - 754304 29 31.03.2021



D2.3 Benchmarking, evaluation and prediction report

3000

5000

7000

9000

2019-08-23 2020-01-20 2020-06-18 2020-11-15

A
ve

ra
ge

 B
an

d
w

id
th

 [
M

B
/s

]

Date [yyyy-mm-dd]

mpiLinkTest on CM

nodes = 1

nodes = 4

nodes = 8

nodes = 16

nodes = 32

Figure 4.: mpiLinkTest benchmarking results with messagesize KB = 4096 and serialized = 0

following different system configurations can be found.

On May 10 2020 there were the following environment variables defined and system software
installed.

• task 0: PINNING =000000000000000000000000000000000000000000000001

• task 1: PINNING =000000000000000000000000000000000000000000000010

• psmgmt version: 5.1.29

On June 28 2020 there were the following environment variables defined and system software
installed.

• task 0: PINNING =000000000000000000000000000000000000000000000001

• task 1: PINNING =000000000000000000000000000000000001000000000000

• psmgmt version: 5.1.30

The default pinning changed between May and June 2020 when a new psmgmt version was
installed on the prototype. The software psmgmt is the process management software being
installed on the DEEP-EST prototype. The pinning defines the default positions of tasks being
allocated on the compute nodes. The environment variable PINNING is a bit mask with 48
positions. Every position is representing a hardware-thread of the compute node. A 0 within
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the bit mask is representing no task being allocated on this thread position. A 1 within the bit
mask marks the process having an affinity to the hardware-thread.

Figure 5.: Cluster module node architecture

Using the software lstopo one can visualise the node architecture on the cluster module nodes,
see figure 5. There are two sockets on the node and two threads per socket core being num-
bered from PU P#0 to PU P#47. The position PU P#0 is the outermost right position of the

PINNING environment variable. The position PU P#47 is the outermost left position of the
PINNING environment variable. The positions PU P#1 to PU P#46 can be linearly extrapo-

lated.

Figure 6.: CM node hardware

Before May 2020 the mpiLinkTest tasks on one node were allocated on the same socket but
on different physical cores. This lead to a higher average bandwidth measurement, when the
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number of nodes is small. With increasing number of nodes the average bandwidth measure-
ment is tending to the average bandwidth of the network. For intra-node communication the
communication uses the same cache on the same socket. For inter-node communication the
sockets at the same position compared to the HCAs are used, see figure 6.

After June 2020 the mpiLinkTest tasks on one node were allocated to cores of different sockets
of the same node. This reduced the contribution to the average bandwidth coming from the intra
node communication. Again, for increasing number of nodes the average bandwidth tends to
the average bandwidth of the network. In conclusion, the communication of data between two
sockets of one node is slower than the communication between two socket of different nodes
through the network connection. For intra-node communication different sockets were used for
the communicating processes. Therefore, the data needed to go through the UPI between the
both sockets. For inter-node communication one process is located on the socket not being
directly connected to the HCA. Therefore, here the data still needed to first be transferred
through the UPI to the other socket where the HCA is located, see figure 6.

For verification single benchmarks were performed with one node, two tasks per node, a mes-
sage size of 4096 KB, 1000 iterations and a pinning of the first task to the 0th thread and a
pinning of the second task to the threads 1,12 and 24 showing the influence of the pinning to
the bandwidth measurement of the mpiLinkTest benchmark, see table 5.

pinning of the second task Maximal Bandwidth in MB/s
1 7756.01
12 4097.18
24 10900.04

Table 5.: mpiLinkTest bandwidth verifications for one node, two tasks per node, a message
size of 4096 KB, 1000 iterations and a pinning of the first task to the 0th thread.

The bandwidth for the communication of tasks assigned to hardware-threads sharing the same
core is the largest. The bandwidth of the case for two tasks cores within the same socket is
intermediate. The bandwidth for two tasks sitting on different sockets of the same node is the
smallest.

2.3.2. mpiLinkTestGPU

In a functional sense ParaStationMPI was CUDA aware before the DEEP-EST project. It was
possible to pass a pointer to the data on the GPU to an MPI Send directive. But this version of
ParaStationMPI was not using the GPUdirect functionality. The sending process of data from
the origin GPU to target GPU on another node was initiated by first copying the data from origin
GPU to origin node memory. From this point the data was copied from origin nodes memory to
target nodes memory. At last the data is copied from the target nodes memory to the memory
of the target GPU.

Within the DEEP-EST project the CUDA awareness of ParaStationMPI was combined with
the usage of GPUdirect technology. This functionality was made available on the prototype
and activated within the benchmark suite during the regular bandwidth measurements. There
is a clear step function within the benchmarking results, see figure 7. Before the step in the
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average bandwidth happened it was comparable for the message size of 1024 kB and 4096 kB.
Afterwards the average bandwidths were different. The larger message size showed a higher
average bandwidth.

0

1000

2000

2020-06-13 2020-08-12 2020-10-11

av
er

ag
e 

b
an

d
w

id
th

 [
M

B
/s

]

Date [yyyy-mm-dd]

mpiLinkTestGPU on ESB 

message size = 4096 kB

message size = 1024 kB

Figure 7.: mpiLinkTestGPU benchmarking results with node unit = GPU, network = IB and
serialized = 0

Analysis of the detailed system kernel infos from August 29 2020 and November 17 2020 are
leading to different usage of software stages versions and different settings for the PSP UCP
environment variable. From the system kernel information data from August it can be extracted
that the environment variable PSP UCP=0 was defined. For the version in November the en-
vironment variable PSP UCP=1 was defined. Setting the environment variable for a separate
and single test with the newer software stage again to PSP UCP=0 validates the drop of the
bandwidth. This is an example for the complexity of the benchmark suite. The benchmark suite
needs to be maintained on a daily basis to ensure the usage of the most recent functionalities.

For increased bandwidth the effect of latency to create an MPI connection is becoming more
relevant. This is due to decreased time needed for sending data from origin node to target
node. Based on this consideration the effective bandwidth measured by two different message
sizes should differ more for higher bandwidths achieved. In fact this is the case here for the
message size of 1024 kB and 4096 kB, like measured, see figure 7. This is another example
for the need of adaptations of parameter spaces of benchmark suites through project duration.
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2.3.3. NEST

For the NEST benchmarks scaling tests were performed on a regular basis. The runtime is
increasing when doubling the number of tasks and the network size. But the increase is signif-
icantly lower than the factor of 2 showing scalability of NEST, see figure 8.
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Figure 8.: NEST benchmarking results with commitid = b84c9ba

There are some large gaps for missing measurement points. This was due to an error in the
NEST commit and an unexpected error in the benchmark suite workflow such that the missing
data points were not communicated to the benchmark suite developers in an automatized way.
In a benchmark suite of this complexity there are a lot of benchmarks undertaken on a daily
basis. The error handling is for the case of such a diverse combination of software and pro-
gramming languages not trivial. Easily situations can occur not recognized by the automatized
error handling strategy as an error. Due to the amount of data produced it is also a time con-
suming task to have a manual look at all data points when there are more benchmark needed to
be integrated into the benchmark suite in parallel. Therefore, special care needs to be invested
in the error handling strategy. This will avoid the occurence of large gaps of measured data like
it is shown here in figure 8.

Within all parameter permutations the runtime of the NEST benchmark shows a clear step
function. The runtime after the step is reduced. Having a look into the kernel information
files on May 9 2020 and on June 20 2020 the software versions used are exactly the same.
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Nevertheless, environment variables are indicating a different pinning of tasks on the node
sockets.

On May 9 2020 for the case of 1 node with 2 tasks and 24 threads per task the environment
variables and system information were given as follows.

• task 0: PINNING =000000000000000000000000111111111111111111111111

• psmgmt version: 5.1.29

On June 20 2020 for the case of 1 node with 2 tasks and 24 threads per task the environment
variables and system information were given as follows.

• task 0: PINNING =000000000000111111111111000000000000111111111111

• psmgmt version: 5.1.30

Before May 9 2020 the threads of task 0 were distributed between two sockets. After June
20 2020 the threads of one task were executed on one socket. This potentially speeds up
communications between these threads. So for the way the benchmark system was set up for
NEST the threads of one task seem to perform a lot of data exchange between each other. In
this case the change of the default pinning lead to a performance increase.

2.3.4. GROMACS

For the GROMACS benchmark the strong scaling behaviour can be verified, see figure 9. Fur-
thermore, there is a dropdown in the performance of the GROMACS performances around end
of May 2020 and beginning of June 2020.

Before performance dropdown around end of May 2020 and beginning of June 2020 the follow-
ing configuration can be extracted from the kernel information logs.

• SBATCH CPU BIND TYPE=ranks

• psmgmt version: 5.1.29

After performance dropdown around end of May 2020 and beginning of June 2020 the following
configuration can be extracted from the kernel information logs.

• SBATCH CPU BIND TYPE=threads

• psmgmt version: 5.1.30

Comparing samples for 24 threads per task and 48 threads per task the case for 48 threads per
task is not revealing the performance drop, see figure 10. In the first case the number of threads
was chosen to fill every physical core with one thread. In the second case multithreading is
activated to fill every physical core with two threads. A change of the default pinning scheme
makes no difference in the second case. It can be extracted that the communication between
the threads of one task is small compared to the compute workload.
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Figure 9.: GROMACS scaling benchmarking results with benchmark system = ribosome,
MPIsperNode = 1 and ThreadsPerMPI = 24

2.4. Conclusion

Benchmarks have typically a lot of parameters to be defined in before. Furthermore, the number
of benchmarks is potentially huge. As a conclusion it needs experience and special care to
define the parameters of a benchmark for regular benchmark runs.

Besides other aspects, the usage of the system, the software and the hardware environment
is constantly changing. With these changes of the system environment also the optimal set of
parameters is changing. Therefore, the process of benchmarking does not only need initial in
depth considerations and thorough preparations, it also needs constant and iterative mainte-
nance. Visualisation of the results, automatized communication and error handling strategies
and automatized result analysis are strong supporters for the benchmark developers.

The first conclusion of this task is a guide of how to write a benchmarking suite. This guide is not
able to prepare for all potentially possible benchmark suites. But it gives a valuable first starting
point. This is of special need since a thorough preparation of a benchmark suite integration is
the key to the success of the very same. The accurate and goal-oriented data collection should
be achieved as soon as possible to be able to cover as many interesting effects as possible.

A second conclusion is that you will never know in before what you are going to measure with a
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Figure 10.: GROMACS benchmarking results with variation of number of threads per MPI task
with benchmark system = ribosome, nodes = 1 and MPIsperNode = 1

benchmark suite. As an example, the case of the change of the default pinning on the prototype,
which was decided within the project duration, was very disruptive to the bencharking results.
Therefore, it is very difficult to prepare a suited parameter set in before right at the beginning of
a project which is prepared for all the things that can happen with the prototype system.

A close and automatised monitoring of the benchmarking results needs to be implemented. At
least, warnings need to be communicated automatically if a jump in the benchmarking results
can be extracted. For this point, algorithms need to be developed and used.

Another result of this task is the evaluation of the integration of CUDA-aware MPI and its con-
clusion to a performance increase when communicating data between two nodes equipped
with a GPU.

At last, the unmeasurable but also very important contribution of regular sanity checking of the
prototype should be mentioned here. Through the regular benchmark suite execution a sort
of unit testing of the prototype was performed. This was a proactive methodology to ensure a
basic level of quality of the prototype. Some hidden errors, like diverging directory structures
between different nodes, were found multiple times and probably saved a lot of hassle for the
early access programmers.
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3. Modelling and validation of scheduling
policies

The evaluation of scheduling policies or system configurations must be done by executing,
simulating (or both) a set of applications confirming a workload. Evaluating a workload doing
real executions is unfavorable because for a valid evaluation lots of runs must be done with
various configurations. In the project we have done real execution for a functional validation
and we have used the BSC-Slurm Simulator for evaluation.

Figure 11 shows the main components of the execution environment when doing simulations.
Each experiments receive two inputs: A workload trace file and the system configuration.

Modular trace file describes the set of applications to be executed. As we presented in
D2.1[2] and D2.2 [3], a workload trace file includes, per application, details such as sub-
mission time, number of nodes requested, execution time, requested time, etc. All the
details needed for the simulation describing the information provided at submission time
and the real values such as execution time that typically differs from submission values.

The system configuration in this project is included in the slurm.conf file. The Slurm configu-
ration file includes the hardware description (number of modules and module description),
and all the other system features such as the scheduling policy and the scheduling policy
arguments.

slurm.conf SLURM 
controller SLURM Daemon

Simulation 
manager

Modular Workload Format

sbatch
sync

Logs

SLURM 
simulator

• Architecture
• Policy

Figure 11.: Execution environment for scheduling evaluation: The BSC-Slurm simulator

The following sections include: Section 3.1 presents the extensions to the Modular trace format
presented in D2.1 required by the energy aware policies proposed. Section 3.2 describes
the methodology used in the project to create modular trace files. Section 3.3 presents the
evaluation of a modular system compared with a conventional homogeneous system. Section
3.4 presents the evaluation of the workflows with dynamic dependencies management.
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3.1. The Modular Workload Trace file format

The Modular Workload Format (MWF) is an extended version of the Standard Workflow Format
(SWF) to support modular architectures and complex workloads. The format, originally defined
in D2.1, was extended to support new use cases of the project. The included fields are:

• Reference Power – Input average power in Watts. Input by user or a power model.

• Average Power – measured average power in Watts

• API call time – in seconds. It models events called by the job that impact the job schedul-
ing. It is used to model the API call for the workflow policy, but it can be extended to a list
of comma-separated key:value elements, with key representing the event type (ID or key-
word), and value the number of seconds passed from the start of the job until the event.
E.g.: ”WF API:650,extend job:850”.

For completeness we present the list of the MWF fields in its entirety in Appendix 7.

3.2. Modular trace file generation

One of the simulation inputs, the trace files, can be traces shared by supercomputing centers
or based on traces generated via workload models. The utilization of traces has the benefit
they are real, however, they are specific to the center that provided it and can not be eas-
ily modified to adapt them to the size of the system, the load or the number of jobs without
significantly affecting the workload characteristics. Because of that reason, we selected the
second approach and we have evaluated the project contributions using traces generated with
the Cirne model [16]. However, the Cirne model generates trace assuming a single module.
In the project we have designed a methodology to merge multiple single module traces into a
single modular trace file and to incorporate the characteristics to be evaluated in the project
such as the module flexibility of the dynamic management of dependencies.
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Figure 12.: Modular trace file generation methodology
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Figure 12 summarizes the main stages of our methodology to generate modular trace files and
to include the characteristics to be evaluated. The first stage generates N single module traces.
Cirne model accepts the following inputs:

• Number of nodes: available nodes in the module, it also affects job’s arrival pattern.

• Arrival pattern: arrival time model, different models are available, extrapolated from traces
released by four supercomputing centers: ANL, CTC, KTH, SCDC.

• Number of jobs.

• Load multiplier: it multiplies the requested time, and influences the arrival time.

• Scale factor: scale job requested nodes, it can be 1 or 2.

Cirne also sets a number of internal parameters:

• n ul1: parameter for the uniform-log distribution used to calculate the job number of re-
quested nodes.

• n ul2: constant parameter for the uniform-log distribution used to calculate the job re-
quested number of nodes.

• n p2 frac: the fraction of power of two jobs over the total.

• tr ul1: same as n ul1, but for calculating the job requested time.

• tr ul2: same as n ul2, but for calculating the job requested time.

We initially left these parameters at their default values.

The N module traces are merged in a single BaseMWT file base modular workload trace file.
This trace file has the jobs in the right order to be submitted for evaluation and is the baseline
to which we apply the different system characteristics to be later evaluated.

To generate the module flexibility, the scripts use as input the percentage of jobs per module
with module flexibility and the list of configurations to be generated. Figure 13 is an example
of the combinations generated. For instance, the 100% of the jobs running on the CM were
allowed to run in the DAM and ESB given they don’t have special requirements. However, only
the 50% of the jobs having as preferred module the ESB would present the module flexibility
and they will be modified to ask for ESB and CM. These combinations where generated based
on the questionnaire we did some months ago to WP1.
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Figure 13.: Modular list example
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Figure 14 shows an example of input to generate workloads with workflows. In that case, the
percentage of jobs to be part of a workflow and the maximum number of components is also
an input for the script. The script modifies the workload adding dependencies to generate
traditional jobs or packing jobs in heterogeneous jobs and adapting the submission time and
requirements to fit in what Slurm would expect for a job or an heterogeneous job. Moreover,
in the scenarios where the delay and the WF-API is used (see 3.4.2), the trace file already
includes the time for the delay flag and the time where the WF-API is invoked. These two
values are generated using the requested time and runtime and using an uniform distribution
between 50% and 90% of the job’s requested time for the delay flag and and uniform distribution
between 50% and 90% of the job’s runtime for the WF-API.

Base MSA workload trace 
(only one module requested)

dependency
Wf?

Set AFTEROK

MSA workload trace with workflows/het jobs

A
dd

in
g 

w
or

kf
lo

w
s

yes

no
delayed

Wf?
yes

Set API call time

no

Model hetjobs - Perc of het Job
- Max hetjob size

Figure 14.: Workflow generation example

3.3. Evaluating conventional vs Modular systems

This section will compare the execution of a given workload in a conventional homogeneous
system and in a modular system. To be fair, we have selected three different configurations
for the homogeneous use case, each one equipped with different CPUs and GPUs, based
on CM, DAM and ESB architectures. The modular use case is based on CM+ESB modules.
To compare modular and conventional systems the presented evaluation does not include the
contributions done in this project concerning modular scheduling or dynamic workflows, as
they only work on modular systems and they require different workloads that cannot run on the
homogeneous case.

3.3.1. Hardware configuration

To dimension the system we fixed a budget and we used it to build the compared systems. We
used the cost of the DEEP-EST components as a reference. In particular:

1. The cost of a non-accelerated node (CM) is 1unit.

2. The cost of the accelerated 2-CPUS node (DAM) is 2.5units.

3. The cost of the accelerated 1-CPU node (ESB) is 1 unit.

Table 6 shows the details per module.

DEEP-EST - 754304 41 31.03.2021



D2.3 Benchmarking, evaluation and prediction report

Module Num nodes Cost Total module cost Percentage
CM 50 1 50 30%

DAM 16 2,5 32 25%
ESB 75 1 75 45%

Table 6.: DEEP-EST prototype costs distribution

Following the DEEP-EST prototype system distribution of nodes, for the modeled modular sys-
tem we have allocated 30% of the budget to the non-accelerated nodes, based on CM, and
70% to the accelerated nodes, based on ESB. We came up with the following clusters:

HOM1-CM Homogeneous system with 165 nodes, equipped with CM nodes.

HOM2-DAM Homogeneous system with 66nodes, equipped with DAM light nodes (CPU+GPU+Memory).

HOM3-ESB Homogeneous system with 165 nodes, equipped with ESB nodes.

MOD-CM&ESB Modular system with two modules: 50 nodes equipped with CM nodes, and
115 nodes equipped with ESB nodes, for a total of 165 nodes.

3.3.2. Workload

The workload for this evaluation has been generated using the previously proposed method-
ology with Cirne model with default parameters, ANL arrival pattern, and 3000 jobs asking at
maximum 32 nodes, about half of the smallest system size. The BaseMWT file generated is
used as the input for the HOM1-CM evaluation.

To evaluate the other scenarios, we have followed the same approach as with the module-list
or the energy aware scheduling: a list of applications types is provided with their runtimes
characteristics, as show in Table 7. The list of application types is based on WP1 applications.
The table shows the 5 application types used. CM, DAM and ESB columns shows the execution
time ratios (where CM is the reference). As an example, CMS (from CERN) is 2.25 times faster
in DAM than in CM and 0.5 time slower in ESB than in CM. On the other side, Correlator (from
ASTROM) is 24 times faster in DAM than in CM and 19 times faster in ESB than in CM. Column
Percentage shows the percentage of each type in the workload.

When running simulations, each job is mapped in a deterministic way1 with an application type,
being applied the runtime settings defined in the application types list. It is worth to mention
this types are applied to jobs with different runtimes and job size since the job classification
is applied to jobs in the trace file. For the modular system jobs have been submitted their
preferred partition, i.e. the one with showing runtime.

3.3.3. Evaluation

The four use cases have been evaluated with the BSC Slurm Simulator. Figure 15 shows
the average wait time, average response time and completion time (max end time) for the

1taking random samples from a uniform distribution
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Application CM DAM ESB Percentage
CMS 1 2.25 0.5 17.5%

Correlator 1 24 19 17.5%
GROMACS 1 3 2 17.5%

xPIC 1 8 8 17.5%
Non-ACC 1 1.5 0.3 30%

Table 7.: Application types used for modular vs homogeneous evaluation. Columns CM, DAM,
and ESB show runtime ratios, e.g. CMS runs 2.25 times faster on DAM with respect

to CM.

four scenarios. As we can observe, the main benefit comes for the utilization of accelerated
nodes given 50% of the applications are significantly accelerated when running on CPU+GPU
nodes. Focusing on homogeneous accelerated scenarios, DAM and ESB, we can see ESB
architecture is also significantly better than DAM architecture because a significant amount of
jobs reports similar performance on ESB and DAM and the other are compensated with the
fact ESB is cheaper and then has more nodes. This can clearly observed on the reduction in
average wait time, where DAM reports 3.2 times more wait time than ESB.

Figure 15d focuses on DAM, ESB and Modular system for the two main metrics used in job
scheduling evaluation: wait time and response time. We can observe that the modular benefits
in terms of response time and wait time by combining a higher number of accelerated nodes
compared to DAM, and more powerful CPUs compared to ESB. The modular system reduces
by a factor of 17.8 the wait time compared with DAM and by 5.4 compared with ESB. And
concerning the response time the modular approach reduces by a factor of 2.4 compared with
the DAM and 2.7 compared with the ESB. At the same time, the completion time, even if not
relevant as response time and wait time, is comparable to DAM case, which reports the best
value.

3.4. Workflows with dynamic dependencies

It was defined a use case in which two dependent jobs need to overlap to directly exchange
information between them.

To address this use case, a new clause for heterogeneous jobs was defined in D5.3 [6], the
delay clause. The delay clause is defined as the number of seconds between the start of the
first heterogeneous job component and the start of the following component. The job scheduler
was edited to accept this clause and create reservations for the heterogeneous job compo-
nents, and by transforming them in normal jobs.

A second solution was developed using classic dependencies between jobs [7]. In this case an
API was designed to change the type of dependency at runtime, whenever the time in which the
two jobs need to exchange data comes. The dependent jobs are submitted with a AFTEROK
dependency, which means the job will run after the one on which it depends terminates. The
API transforms this dependency to an AFTER dependency, in which the job will run after the
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Figure 15.: Modular system performance vs Homogeneous clusters
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one on which it depends starts.

An API was also developed for the delay clause, in this case the API tries to move the job’s
reservation backward in the case the delay specified was too long.

To resume:

1. delay clause: it supports overlapping heterogeneous jobs. It grants the overlapping if the
user requested time for the job corresponds to the actual job’s runtime.

2. dependency+WF-API: it uses a simple technique to overlap dependent jobs. It does not
grant that the jobs will overlap.

3. delay clause+WF-API: like point 1, but it tries to fix the problem of actual job’s runtime
less than requested time. It also helps when the delay value is not known with precision.

3.4.1. Performance metrics for workflow evaluation

In this section we are evaluating the impact of having a dynamic management of dependencies
between jobs (both traditional and heterogeneous). Given these jobs or components are part of
the same work, we have extended the traditional metrics applied to individual jobs to take into
account N jobs can be part of a workflow or an heterogeneous job and must be considered as a
whole. Simple jobs are considered workflows with one component. Metrics used in scheduling
evaluation are the average WaitTime, the average ResponseTime (EndTime - SubmissionTime)
and the average Slowdown (the ResponseTime normalized by the RunTime).

Given a workflow WF made up of n components c, we define the following metrics for WF:

WF StartT ime = min
∀c∈WF

StartT imec (3.1)

WF SubmissionT ime = min
∀c∈WF

SubmissionT imec (3.2)

WF EndTime = max
∀c∈WF

EndTimec (3.3)

WF Runtime =WF EndTime−WF StartT ime (3.4)

WF ResponseT ime =WF EndTime−WF SubmissionT ime (3.5)

WF Components Runtime =

n∑
c=1

Runtimec (3.6)

WF Internal WaitT ime =
n∑

c=2

(StartT imec − EndTimec−1) (3.7)

WF Slowdown =
WF ResponseT ime

WF Components Runtime
(3.8)
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WF Normalized Runtime =
WF Runtime

WF Components Runtime
(3.9)

Regarding WF Internal WaitT ime, (StartT imec − EndTimec−1) will be added to the sum-
mation only if its value is greater than 0.

3.4.2. Experiments

We have compared the following scenarios:

DEP Jobs use the traditional way to specify dependencies (AFTEROK) when the job with the
dependency starts one the previous finishes. In that case, there is no reservation of
resources so it can happen the dependent job has to wait until there are enough resources
to start.

DEP+API Jobs use the traditional way to specify dependencies (AFTEROK) but once the de-
pendency is ready the job will notify the scheduler about that using the new WF-API and
the dependency type will be changed to AFTER, becoming ready to be executed. We
would expect from this scenario a reduction in the WaitTime of dependent jobs given the
dependency is broken early on time.

HET In this case, jobs with dependencies are packed in heterogeneous jobs. This is a signif-
icant difference in the way Slurm internally manage heterogeneous jobs compared with
traditional jobs. In that case, resources for all the components are allocated since the
start time of the first component. This implementation guarantees resources are ready to
be used by any component but in case of components with dependencies this strategy
result in a significant waste of resources.

HET+DELAY In this scenario the users specifies a delay time to mark the time at which re-
sources must be ready for the dependent job. This implementation minimizes the waste
of resources compared with the standard approach but is still affected by miss-predictions
in the runtime of jobs.

HET+DELAY+API This last scenario is the most complex and powerful. In this case, the user
specifies a delay time with the new flag and it notifies at runtime the scheduler about the
readiness of the work. It allows the system to start with the resource reservation and to
dynamically adapt to changes in the runtime behaviour.

Each scenario has been evaluated with workloads containing 24% or 33% of jobs grouped in
workflows. It is worth to mention the goal of this contribution is to improve the execution of jobs
in workflows without penalizing the other jobs, so the benefit in global metrics is limited to the
total number of jobs in workflows and the weight of these jobs in the total workload CPU time
requested.

In all the cases, workloads include 3000 jobs, 1000 jobs submitted to each module. We used
the default values of load per module, ANL arrival pattern, and we set the reductionfactor to two
only for DAM, given its reduced size. A minimum of 10% of jobs request power of two nodes.
The maximum job size for the CM is 50, for the ESB is 75 nodes, and 8 for DAM.
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3.4.3. Dynamic workflows management evaluation: Workloads with 24% of
workflows

This section presents evaluation results for an use case where 24% of the jobs belong to a
workflow. Given our goal is support the overlapping of workflows as much as possible without
penalizing jobs not in a workflow, we don’t expect to improve generic metrics such as aver-
age wait time or response time for DEP scenarios where jobs release their allocations once
finishes. In the case of HET scenarios the WF-API can help to improve generic metrics since
job allocation includes all the components and the WF-API helps to reduce the pressure in the
system by releasing faster the job allocation.
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Figure 16.: Workflow performance metrics when having a 24% of the jobs being part of
workflows

Figure 16a shows the workflow normalized runtime for all the jobs. For jobs not in a workflow
the normalized runtime is always 1. For jobs in a workflow, this metric quantifies the overlap-
ping between components, for this reason, in the DEP scenario it’s always greater or equal
to 1 and in the HET scenario is always lower than 1 because heterogeneous jobs by default
are executed only when all the resources are guaranteed. We can observe how the WF-API
helps to significantly reduce this value in DEP scenarios and on the other side is not too much
incremented in HET scenario. The fact standard heterogeneous jobs are only executed when
resources are available negatively affects other metrics such as the average wait time or aver-
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age response time as it is shown in Figure 16b. Figure 16c shows the average workflow time
and again we can see how the WF-API improves the HET scenario even in generic metrics
because the flexibility in the system compared with the standard use case. Finally, Figure 16d
shows the percentage of the CPU time executed by workflows that is overlapped (normalized
runtime less than 1) and not overlapped (greater than 1). Of course, in terms of normalized time
heterogeneous jobs are the best one but at the cost of very bad global results. With the WF-API
we don’t get the same percentage of overlapping since resource are allocated dynamically but
the overall metrics are much better than the basic case.

3.4.4. Dynamic workflows management evaluation: Workloads with 33% of
workflows

This section presents evaluation results for a use case where 33% of the jobs belongs to a
workflow. Having more workflows introduces even more pressure to the system. The HET
case is even worse when comparing traditional metrics such as wait time, response time or
slowdown. We can see how the percentages for specific workflow metrics such as the normal-
ized runtime varies but are still able to manage the dynamics of the system. We can improve
the normalized runtime in the DEP scenario when using the WF-API (figure 17a) and 8% of the
CPU time of workflows are overlapped when using the WF-API (figure 17d).

As in the previous workload, the WF-API significantly reduces the penalty on wait time, re-
sponse time and slowdown suffered by heterogeneous jobs (figures 17b and 17c) by offering a
reasonable percentage of job overlapping 27% of the CPU time when using the delay flag and
the WF-API together. Figures 17a and 17d also show the benefit of using the WF-API together
with the delay flag in order to react dynamically to runtime conditions.

3.5. Conclusions

This section has presented, using simulations, two performance evaluations: the comparison
of modular compared with homogeneous systems and the comparison of the utilization of the
WF-API and delay flag to offer a dynamic management of the workflows.

Simulations uses the same Slurm code installed in the prototype and the only part of these
results that is simulated is the execution time of jobs. Because of that, we can guarantee these
results could be extrapolated to a real workload with the only requirement execution times used
in trace files corresponds with real ones. Given the information to replicate a real experiment
was not available in both evaluations, we created a set of trace files and a complete methodol-
ogy to consider different scenarios with different types of applications. In the first analysis the
list of applications and their characteristics was modelling a subset of WP1 applications. We
have demonstrated numerically the strengths of the modular system as concept and of the ESB
proposal as a key component in this modular system. The fact that it is a cheaper component
makes it possible to have a high number of this node type. Together with a given percentage of
powerful nodes to support applications with traditional CPU requirements makes this solution a
very good solution.

In the second analysis the ratio between components was not relevant for the experiment since
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Figure 17.: Workflow performance metrics when having a 33% of the jobs being part of
workflows
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jobs were requesting a predefined module. In that case, we model the dependencies between
components in two scenarios: dependencies between jobs and between components. Results
have demonstrated it is possible to reduce the strain heterogeneous jobs introduces in the
system by defining a given delay and even better when using the WF-API to notify the scheduler
about runtimes modifications. To introduce this WF-API we have extended the MWF previously
proposed with a new field. The Slurm Simulator has also been extended to support this dynamic
event and of course the WF-API feature.

The main motivation to provide job overlapping was to enable data communication between
jobs using the network rather than the filesystem, as in the case of traditional jobs (DEP sce-
narios). The modeling of the extra runtime (overhead) required to perform the IO when the
WF-API is not used (DEP) and the extra runtime for communication when using it (DEP+API)
have not been included in the simulation because of the lack of real use cases. It was demon-
strated with some synthetic experiments that using communications is more efficient than using
IO. Introducing this extra parameter in the simulations without following a real pattern or model
would just potentially introduce noise on the conclusions. Finally, the absence of the simula-
tion of the IO bottleneck in the evaluation represents a worst-case scenario, and considering it
would improve the analyzed metrics.
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4. Performance modelling and extrapolation

The goal of the performance modelling and extrapolation task is twofold. First, to analyse the
performance and study the scalability of the applications. Second, to model the DEEP-EST
architecture to evaluate efficiency, predict executions at larger scale, and to study the impact of
different mappings. For this task we employ the performance analysis tools developed at BSC
[55]. Extrae and Paraver are used to obtain and visualise traces of the project’s applications,
and Dimemas to simulate different system configurations. Continuing the work presented in
D2.2 [3] we report new case studies for GROMACS, xPIC, NEST+Arbor, NextDBSCAN and
EC-EARTH [48].

4.1. BSC modelling tools

The performance modelling approach used in DEEP-EST is based on BSC’s efficiency model,
which characterizes the performance of the applications using fundamental factors that can
be applied to understand and predict application’s scalability. The factors are measured as
values between 0 and 1, the higher the better. An efficiency of 0.8 indicates that the use of
the resources was 80%, so 20% of the corresponding resources allocated to the execution are
unused. In the general case, this value can be considered a boundary between good and bad
performance.

This is a multiplicative model, where the global efficiency of a parallel application can be de-
composed into two main factors:

Parallel efficiency represents the percentage of time spent on the computation (useful work)
with respect to the total execution time.

Computation scalability reports the scaling of the computation itself. For instance, an appli-
cation that suffers code replication when scaling will report degradation in the computation
scalability.

Similarly, the parallel efficiency can be decomposed into three main factors:

Load balance (LB) measures the efficiency loss due to differences on the computing time be-
tween processes. If some processes take more time in computation, the other processes
have to wait for them in subsequent synchronizations, for instance, in MPI collective op-
erations.

Transfer (Trf) measures the efficiency loss due to the transference of data between processes.
If the application is dominated by communications, Transfer efficiency would be low.

Serialization (µLB) measures the efficiency loss due to dependencies during the execution.
This factor also reflects load imbalances that can be compensated along time. If on the
even iterations half of the processes do more work than the other half, but on the odd
iterations the behaviour is just the opposite, Load balance would report good efficiency
while Serialization would degrade.
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Load balance can be directly measured from an instrumented execution. In order to compute
the Transfer and Serialization factors, it is necessary to isolate the application execution from
the network characteristics, which can be done using Dimemas to predict the behaviour running
on an instantaneous network.

Hybrid applications that use multiple runtimes, for instance MPI+OpenMP, can be likewise char-
acterised with BSC’s efficiency model by decomposing the metrics one level further. Hybrid
metrics are expressed as the product of the efficiencies of their composing runtimes. Simi-
larly, modular applications comprised of multiple binaries can be characterised by applying the
efficiency model globally to the whole application, and individually to each of their modules.

The BSC efficiency model characterizes the execution of a given application on a given plat-
form (the platform component includes not only the hardware, but also the software stack, the
process mapping, etc.). Additionally, if the application is very sensitive to the input data, dif-
ferent models may be generated from various inputs. As the model is based on a trace of
timestamped calls to the parallel runtime and on the ratio between the computing time and the
communication/synchronization time per process, relevant modifications in the code structure
or in the MPI calls used, have a high impact on the resulting model and may render a model
generated before these modifications useless.

Once computed, the efficiency model can be used to extrapolate the behaviour at larger scales.
The input for the extrapolation is a set of traces for at least four or five executions increasing in
scale. The model set-up is adjusted to analyse the collected traces by looking for behavioural
trends, while increasing the scale. By default, the extrapolations are based on the following Am-
dahl’s fit (Equation 4.1) which reflects the contention/serialisation on a given resource, where
metric is the efficiency that we are modelling, f is an adjustment function (linear, cubic or log)
that alters the interpretation of the number of processes for each one of the fundamental factors
depending on how they interact, and P the number of processes for a given run.

Amdahlfit =
metric0

fmetric + (1− fmetric) ∗ P
(4.1)

If the collected traces allow identifying an underlying physical phenomenon that follows a more
specific law for a given efficiency factor, the parameter P in the previous formula can be substi-
tuted by the corresponding/approximate function based on the number of processes.

If the goal is to predict the behaviour at several orders of magnitude bigger than the instru-
mented executions, it is important to validate the model with non-instrumented runs with in-
creasing scale, as far as possible from the baseline. Validating the scale at least half way
from the largest run used for modelling and the target prediction seems a safe and reasonable
approach.

Even though the model is developed for a given platform, Dimemas can be used to estimate
the execution on a different platform. Before extrapolating the simulated results, it may be rec-
ommendable to check whether we have to readjust the model looking at the traces generated
from the simulations. With this approach, we can predict the execution of a given application
on architectures that are not available, or we can study the sensitivity of a given code to the
key factors that characterize the Dimemas network: bandwidth, communication latency, the
number of messages coming in and out for a given node (input/output links), and the number
of messages that can use concurrently the network (number of buses). The main target for
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Dimemas is modelling the network, but can also be used to simulate the porting to a processor
twice as fast, or the impact of improving the computations from specific parts of the code. It
is also possible to adapt the mapping of the processes to the available resources; but there is
neither modelling of the memory hierarchy, nor multi-core sharing effects.

Using Dimemas simulations to feed the BSC efficiency model, we can build new models of an
application for desired architectures and configurations. The results of the models generated
are providing us with very interesting insights about constraints, requirements, and potential of
a given application.

4.2. Analysis methodology

In the following sections we present performance analyses for several of the project’s applica-
tions. In general, we have conducted an efficiency analysis, scalability extrapolation, in-depth
trace analysis, and provided suggestions to improve towards the exascale. However, each
application is different, so the analysis for every case is adjusted to their own idiosyncrasies.

As at the beginning of the project the DEEP-EST prototype was not yet available, the first anal-
yses for GROMACS and xPIC were conducted on JURECA with abstract simulations assuming
improved network and CPU characteristics, without relying on a specific parameterization for
the DEEP-EST architecture. This was useful to evaluate whether potential improvements would
actually contribute to increased performance.

Once the DEEP-EST prototype became available, the analysis tools were ported to this sys-
tem, and subsequent analyses for NEST+Arbor, NextDBSCAN and EC-EARTH have been con-
ducted for the target architecture. For these studies, we gathered specific system’s parameters
that have been taken into account to perform more finely-tuned simulations. Table 8 collects
relevant parameters that have been used to configure the Dimemas simulator, regarding the
dedicated network connections, and inter-/intra-node network parameters such as bandwidth,
latency and contention for the CM, DAM and ESB clusters.

These parameters have been collected from a combination of the theoretical system’s speci-
fications, measurements provided by other workpackages, and effective measurements taken
from the sysbench benchmark tool [47] measuring single-core CPU performance, as well as
traces obtained on the target machines for the LULESH benchmark [46]. The validation of the
simulation parameters was performed by comparing real execution traces against the resulting
simulations. More precisely, we obtained real execution traces of LULESH in the CM, DAM
and ESB, and also on JURECA. Using as input the CM trace, we simulated all three DEEP-
EST modules (nominal CM, DAM and ESB); and we did the same using as input the JURECA
trace. Comparing the cross-module and cross-machine simulations against the real runs, we
observed small deviations that mostly originate in increased variability in the duration of the
computations on the DAM and ESB clusters, larger on the latter, as shown in Figure 18, that
the simulator does not predict.

Nevertheless, the simulation error reflected in the total execution time is ≤ 2% for the CM and
DAM, and ≤ 6% for the ESB. All simulations keep real run trends, with an error of less than 2
percentage points for all the efficiency metrics in the computed models between the real and
simulated traces.
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Ethernet CM↔ ESB ESB↔ DAM

Bandwidth 40 Gb/s 100 Gb/s 100 Gb/s
Max messages on-the-fly ∞ ∞ ∞

(a) WAN settings

CM DAM ESB

Bandwidth 100 Gb/s
100 Gb/s (EXTOLL)
40Gb/s (Ethernet)

100 Gb/s

Max messages on-the-fly ∞ ∞ ∞

(b) Inter-node settings

CM DAM ESB

Nodes 50 16 75
Cores/node 2x12 2x24 1x8

JURECA CPU ratio 1.83
1.70 CPU
7.30 GPU

1.33 CPU
7.30 GPU

CM CPU ratio 1.00
0.93 CPU
4.00 GPU

0.73 CPU
4.00 GPU

Bandwidth 83.2 Gb/s 83.2 Gb/s 83.2 Gb/s
Number of buses 3 3 2
Local latency 8.79 us 3.60 us 3.60 us
Remote latency (from CM) 9.01 us 3.52 us 3.55 us
Max messages on-the-fly ∞ ∞ ∞
Network devices 1 2 1

(c) Intra-node settings

Table 8.: Dimemas simulation parameters for the DEEP-EST prototype

Figure 18.: Histogram of computation duration of LULESH benchmark on CM, DAM and ESB,
showing increasingly larger computations from left to right (x-axis).

Light green to dark blue gradient indicates the most frequent behavior.
More spread data (red boxes) indicates higher variability
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4.3. GROMACS

GROMACS is a molecular dynamics package designed for simulations of proteins, lipids, and
nucleic acids that have complicated bonded interactions. The code is structured into two types
of processes —Particle-Mesh Ewald (PME) and Particle-Particle (PP)— that are tighly coupled
and synchronise frequently during the execution, with very different granularity and behaviour.

Two different use cases have been studied for GROMACS. In D2.2 [3], an extensive analysis
for a problem of 325 thousand atoms in strong scaling mode from 1 to 16 nodes was already
presented. In this first analysis, we decided to maintain a fixed ratio between PME and PP
processes when scaling in order to minimise variability between executions, but this generated
more imbalance in certain scales than the configurations typically tuned by the users.

The second study removes the restriction that we imposed on the PME:PP ratio, enabling the
user to finely tune the ratio for each scale, which is the scenario that we consider most relevant
for the project, and this is the setup that the users would typically use. Also, a larger input case
was selected of 20 million atoms that allowed to execute with a higher number of cores. We
obtained traces up to 1536 cores (64 nodes), and execution timings for two additional scales
up to 6144 cores (256 nodes), on the JURECA cluster. For this case we extended the previous
analysis with brief comparison between both configurations. The efficiency model for the 20M
atoms case with variable PME:PP, ratio is presented in Table 9.

Table 9.: Efficiency model for GROMACS (20 million atoms, variable PP-PME ratio)

While the Parallel efficiency only sees a steady decline in the first scales, it suffers a sudden
drop of 10 percentage points at 1536 processes, contrary to the previous case, where Parallel
efficiency sees a steady decrease from ≈ 90% when running on 1 node, to ≈ 60% on 16. The
reasons for this degradation in both studies differ. In the 325k atoms with fixed PME:PP ratio,
it was mainly caused by Load balance issues that aggravate in larger scales (6% ParEff, 15%
LB on 256 nodes). On the other hand, Load balance on the 20M atoms case with variable
PME:PP ratio, now remains practically steady at 92− 93%, and the problem originates from the
Communication efficiency that degrades mostly due to the Serialization factor, that also sees
an abrupt drop of 7 percentage points at the largest run.
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Extrapolation analysis

The main difference between both GROMACS studies resides in the setting for the PME:PP
ratio. When it was artificially fixed, the model clearly pointed at a problem with Load balance, as
shown in Figure 19 that depicts the efficiency (y-axis) for each fundamental factor as the scale
increases (x-axis, expressed as the scaling factor with respect to the initial run). On the con-
trary, with process ratios variably adjusted to select the most balanced setting for each scale,
Serialization efficiency degrades faster and becomes the most limiting factor to the scalability
of the application. This is shown in Figure 20a, that depicts the result for an extrapolation with
4 points (from 192 up to 1536 cores, an 8× increase), validated with 6 points (up to 32×, 6144
cores) with a prediction deviation of ±1 second of the application’s execution time (Figure 20b).
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Figure 19.: Extrapolation model for GROMACS (325 thousand atoms, fixed PP-PME ratio)

After Serialization, Transfer is the second component that degrades the most. Since the appli-
cation is running in strong-scaling mode, this behaviour is expected as the amount of work per
process keeps decreasing with the scale, and at some point the execution becomes dominated
by communications. Still, the projected Transfer trend shows that the application could scale
up to 64× from the base case (≈ 12k processes), with reasonably good efficiency (≈ 70%)
for the current input, at which point the problem size probably becomes too small for so many
processors, and therefore it would be desirable to increase the input to maintain a favorable
computation-to-communication ratio. Contrary to the previous case, Load balance now shows
a much slower degradation rate, indicating that this factor is hardly an issue until the scale of
128× from the base case (≈ 25k processes), assuming the variable PME:PP ratios will main-
tain good balance at larger scales.

Allowing to finely tune the ratio between PME and PP processes as the user suggested, cer-
tainly improves the balancing between them. This results in better ParEff values (solid yellow)
than those on the fixed setup (dotted yellow) and are plotted together for easy comparison in
Figure 20a with respect to their scaling factor, independently to the resources they used. The
application exhibits the same order of good scalability in both cases, and maintains good effi-
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ciency values up to 16×, and despite the scaling trend is similar, the ParEff (solid yellow) for
the experiment with variable ratios achieves improvements up to 9 percentage points in the
measured scales.
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(a) Extrapolation with 4 points (runs from 192 to 1536 cores)

(b) Validation with 6 points (runs up to 6144 processes, fitting error ±1 second)

Figure 20.: Extrapolation model for GROMACS (20 million atoms, variable PP-PME ratio)

Potential improvements towards exascale

To better understand the serialization issue pointed by the efficiency analysis, we compare the
two largest traced executions for the variable ratio case running on 32 nodes (84 PMEs, 684
PPs), and on 64 nodes (168 PMEs, 1368 PPs), that present the same ratio between the two
types of processes.
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Figure 21 shows the same time lapse starting with the first subiteration of the main loop, where
we can see that on 32 nodes (21a) the application is able to complete 4 iterations, while on
64 nodes (21b) only achieves 7 instead of 8 if the scaling had been perfect. The reason for
this is the increased time in MPI Recv, MPI Waitall and MPI Sendrecv (white, green and brown
regions) that translates in subsequent computations starting delayed, which propagates the
effect until it is absorbed, but the problem does not stop here, as it keeps appearing throughout
the execution and at different processes, as shown in Figure 21c. Even in the iterations where
there is no significant perturbation, PPs usually arrive before the PMEs, and the former stall
waiting for the latter in the MPI Recv.

(a) First subiterations in 32-nodes run (84 PMEs and 684 PPs)

(b) First subiterations in 64-nodes run (168 PMEs and 1368 PPs)

(c) Full iteration in 64-nodes run showing multiple perturbed communication regions

Figure 21.: GROMACS timelines comparing 32- and 64-nodes runs,
showing perturbations in MPI calls
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(a) Early PMEs stall in MPI Waitall in the 32-nodes execution

(b) Delayed PME results in PPs stalled in MPI Recv in the 64-nodes execution

Figure 22.: Zoomed view of GROMACS showing the distinct
wait patterns in the communication phase

Figure 22 shows a zoom with a subset of processes where we can clearly appreciate the
difference. While on 32 nodes, the PMEs (processes calling the purple MPI Allreduce) finish
their computations sooner and are able to start sending data to the PPs, the latter are still
computing and when they are ready to receive, data is already there and can complete their
computations very fast. This results in the PMEs stalling in MPI Waitall (green) until the PPs
are ready to communicate again.

When the application scales to 64 nodes, the PMEs are unable to reach the communication
phase before the PPs as they did on the previous case. The PPs that finish their computations
sooner are now stalled in MPI Recv (white), waiting for PMEs to send data. As there are more
PP than PME processes, in the 64-nodes case we now see many more processes blocked in
MPI communications, about 8 times more with the ratios selected for these cases.

Nevertheless, the most perturbed iterations are caused by delays on the PP’s, correlated with
unexpected drops in IPC that extend the duration of the computations. Due to the tightly cou-
pled communication pattern, the delay of a single PP is paid both in multiple PPs and also some
of the PMEs. This is shown in Figure 23, where process 331 is systematically delayed, causing
a cascade of waits in all its direct and indirect communication partners (enlarged white, green
and brown).

Both effects are reflected as a drop in the efficieny factors previously seen in the last column
of Table 9. Overall, what the model points as Serialization is the effect of delays in the compu-
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Figure 23.: Zoomed view in 64-nodes run showing process 331 of GROMACS systematically
delayed, causing a cascade of increased MPI wait times in partners

tations of a single process, that become amplified by the dependencies in the communication
pattern impacting many others.

One recommendation would be to reconsider the communication pattern and the sequence of
dependencies between PPs, PMEs, and PPs between PMEs, with the objective of minimizing
them and increasing the asynchronism of the application, so that it is less sensitive to variability
or system noise, that will be very frequent in exascale platforms.

Another consideration to avoid the waits in MPI would be to balance the PME:PP processes in a
way that ensures the timely arrival of the PMEs to the communication phase, as many PPs rely
on this. After discussing the analysis results with the user, they pointed out that GROMACS
has a dynamic auto-tuning mechanism that does adjust the domain sizes and balance the
computational load of the MPI ranks, but requires thousands of steps to optimize the particles
distribution along the nodes. As a next step, it would be interesting to analyse the effects of this
load balancing procedure in the application’s efficiencies, and whether it helps to mitigate the
Serialization issues.
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4.4. xPIC

xPic is a particle-in-cell code used in the study of space plasma physics. It uses a first-principles
algorithm, iteratively solving Maxwell’s equations of electromagnetism and Newton’s equations
of motion. The code is composed of three main phases distributed in two solvers: a) the field
solver calculates the electromagnetic fields in Cartesian grid; b) the particle solver transports
billions of electrons and ions in a mesh free 3D space, and extracts the moment distribution
functions from the particles to the Cartesian grid in order to couple them to the field solver.
The code has multiple layers of memory management and parallelization and it uses MPI for
inter-node communications and OpenMP for intra-node processing and offloading.

Two executions of the IMM TestONE case running 100 iterations with 768 cells per core of the
code were run in weak scaling mode from 1 to 256 nodes on the JURECA cluster, one pure MPI
with 24 ranks/node; and another hybrid MPI+OpenMP with 1 rank/node and 24 threads/rank.
Starting from the pure MPI version, the structure of the application for one step of the iterative
loop is depicted in Figure 24, showing two long computing phases at the beginning and at the
end of the iteration (dark blue in 24a), separated by three waves of fast MPI Ssend/Irecv peer-
to-peer communications (24b) ending in an MPI Allreduce; and shorter computations (light
green in 24a). The very high computation-to-communication ratio is also reflected by very high
efficiency values, above 96%, for all the instrumented runs and efficiency factors, reported in
Table 10. While the Computation scalability factor remains constant, we can observe a slight
degradation in Parallel efficiency mainly caused by Communication efficiency. Actually, this
degradation accelerates with scale, and just by looking at the execution times up to 256 nodes
we can observe in Figure 25 a ≈ 40% drop in the speed-up, that should remain constant for this
weak scaling experiment.

(a) Computation duration (b) MPI calls

Figure 24.: xPIC application structure for 1 iteration of the pure MPI version

Figure 25.: xPIC measured speed-up for runs from 1 to 256 nodes

DEEP-EST - 754304 61 31.03.2021



D2.3 Benchmarking, evaluation and prediction report

24 48 96 192 384

Global efficiency

-- Parallel efficiency

   -- Load balance

   -- Communication efficiency

       -- Serialization efficiency

       -- Transfer efficiency

-- Computation scalability

   -- IPC scalability

   -- Instruction scalability

   -- Frequency scalability

98.94 98.33 98.20 98.01 97.00

98.94 98.47 98.14 98.10 96.90

99.48 99.50 99.26 98.92 98.80

99.46 98.96 98.87 99.17 98.08

99.85 99.65 99.43 99.94 99.89

99.61 99.31 99.43 99.24 98.19

100.00 99.86 100.06 99.91 100.11

100.00 100.02 100.04 100.01 100.09

100.00 100.00 100.00 100.00 100.00
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Table 10.: Efficiency model for xPIC (MPI version)

Extrapolation analysis

In previous reports we already presented an extrapolation model projected from the measure-
ments of the first 5 experiments (from 1 to 16 nodes), and assuming an Amdahl fit for all
their components, which resulted in a good fit up to the largest measured experiment with 256
nodes. However, the model was optimistic and predicted lower than real execution timings, with
a ≈ 10% deviation beyond this scale, as shown in Figure 26b for 6144 processes between real
(blue) and predicted (green) timings.

Focusing on the real execution timings, we observe variability mostly at the smaller scales (24
to 384 processes), reflected as ups and downs in the Time measured series. Since we work
with a small set of measurements, the number of points selected to compute the extrapolation
and their trend, specially when the last point falls into a peak or a valley, highly influence the
shape of the projection. To this end, we extend this analysis to extrapolate with 3, 4 and 5 points
and evaluate whether the projected trend improves or degrades based on the points used.

Figure 26b (left) shows the best fit for each selection of points, where the extrapolation with 3
points results in the most accurate prediction under the reasonable assumption that the Load
balance factor would not degrade in a weak-scaling setup where the workload per process
remains constant, and reduces deviation to ≈ 3%.

This is the best adjustment within the validation scale up to 6144 processes, just an order
of magnitude higher than the data used for the extrapolation. However, the middle and right
plots in Figure 26b show the three models diverge with the scale. To be certain of which of
the three models would fit better at the largest scale (up to 3 orders of magnitude higher than
the extrapolation data), it would be convenient to obtain more validation measurements not
so far away from the intended predictions, so as to confirm which of the curves is closer to
reality. Anyway, the observed trends already give us a clear intuition about the evolution of the
application’s behavior.
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(a) Extrapolation with 3 points (runs from 24 to 96 processes)

(b) Validation with 9 points (runs up to 6144 processes; fitting error < 4%)

Figure 26.: Extrapolation model for xPIC (MPI version)

The improved extrapolated model, shown in Figure 26a, shows a continuous degradation in
Parallel efficiency, and on the basis of these figures we conclude this xPIC configuration should
not run with more than ≈6 thousand processes as the efficiency falls way below 80%, which we
consider the threshold for good efficiency. This degradation is caused by low Communication
efficiency, originated by Serialization effects that will be studied in detail in the following section.

Potential improvements towards exascale

As we have seen the scalalability of xPIC is topped up well before the exascale. In this section
we analyse the traces in detail to understand the causes for degradation and how to circumvent
them.
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Figure 27 shows 5 timelines for consecutive time intervals within a single iteration of the algo-
rithm, zooming in few processes of a 16-node execution. Starting from the initial computation
(1), each timeline (2-5) focuses on the communication region at the end of each phase. The
communication pattern consists in each rank talking to their two immediate neighbours, with
the last rank communicating with the first, and viceversa. All processes send the same total
amount of messages and bytes, but one-third more messages to the upper ranks.

Running MPI_Allreduce MPI_Ssend MPI_Waitall MPI_Waitany

Figure 27.: xPIC collapsed timeline for the beginning and the four communication phases
of the main iterative step (from left to right)

When the efficiency metrics are computed at the level of these internal phases, where the ra-
tio of communication-to-computation is much higher, the observed Parallel efficiency is signifi-
cantly lower, as shown in the Real row of Table 11. This is partly due to computation imbalance,
that can be clearly observed in 27A, where processes not only arrive delayed from the previous
iteration, but also take variable amount of time to reach the next communication phase 2. Or
in 27B, where all processes exit synchronized from a global operation, but again arrive stag-
gered to the next communication phase 5. Histogram in Figure 28 shows a variability of ≈ 10%
on the duration of the computations in phases 2 to 4, where the different processes (rows)
present increasingly larger computations (from left to right), mainly due to lower IPC (green) for
the larger computations (right). The same behaviour is exhibited in all phases but the slower
processes vary over phases and iterations, leading to staggered arrivals to the subsequent
communications. On the other hand, the communication pattern aggravates this problem by
introducing serializations, seen clearly in 27C where the imbalance is propagated directionally
to the immediate upper and lower MPI ranks, creating triangular shapes that expand from a
central process. When this process happens to be a slow one, this generates a chain of de-
pendencies through the neighbourhood that is ultimately paid in overly large waiting times in
the collectives (Figure 29a). Furthermore, the more processes that participate in this chained
communication pattern, the larger the waiting times will become.

With Dimemas we can easily simulate what would be the effect of eliminating the variability
observed in the the computations. To this end we modified the duration of every computing
phase to be the average of all processes in that same phase, resulting in an up to 90% reduction
of communication waiting times, exemplified in Figure 29b for the collective phase, although all
other phases show the same degree of improvement. At the efficiency level, the Balanced row
in Table 11 reflects improvements between 15 to 53 percentage points in Parallel efficiency for
each phase, gained by balancing the computations. This demonstrates the waiting times in MPI
originate from dynamic imbalances in the computations, confirming the extrapolation prediction
that serializations are the root cause of the performance issues of the application.
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Table 11.: xPIC efficiency metrics per phase

Figure 28.: xPIC computation duration histogram correlated with IPC

(a) MPI communication phase 4 showing serialized MPI Waitany (green) delayed due to
communication pattern and consequently delaying MPI Allreduce (pink)

(b) Simulation with balanced computations showing improved MPI times for the same phase as 29a

Figure 29.: xPIC detailed views comparing real and simulated runs
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As perfect computation balance may be difficult to achieve, another approach to improve the
efficiencies, that Dimemas is not able to simulate, would consist in redisigning the communica-
tions of the application to a more flexible pattern that is able to break the dependency chains
between processes enabling a higher number of simultaneous communications that would re-
duce those waiting times due to serialized partners.

Comparison with hybrid MPI+OpenMP version

xPIC can also be run with a hybrid configuration of MPI+OpenMP. Adding OpenMP has the
advantage of increasing parallelism without scaling up the number of MPI ranks, which limits
network traffic and reduces potential risk of congestion. Furthermore, as the iteration time
is dominated by long computations, thread-level parallelism is a logical solution to accelerate
these regions by splitting the work among multiple threads. The following analysis studies this
scenario with an execution of a hybrid MPI+OpenMP version of xPIC ran on 16 nodes of the
JURECA cluster, with 1 MPI rank per node and 24 OpenMP threads per rank.

The computation structure for one full step of the main iterative loop, as well as a zoomed view
for a subset of processes in the middle area, are depicted in mid and bottom timelines in Figure
30a, respectively. The structure is very similar to the MPI version of the code previously shown

(a) Detailed view for MPI communications (top), computations
(mid), and zoomed (white box) computations (bottom)

(b) Serialized communication
pattern

Figure 30.: xPIC hybrid MPI+OpenMP structure
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in Figure 24a, but introduces a new issue: a large sequential phase that represents roughly
the 17% of the total iteration time, where only the MPI ranks are computing while all OpenMP
threads are sitting idle (black gaps), resulting in an inefficient use of the available resources.
Most MPI communications occur during this sequential phase, as shown in Figure 30a (top),
which suggests a limitation in the algorithm that requires data exchange to progress, preventing
further parallelism.

The communications outside the sequential phase follow the same pattern observed before,
with the difference that up and downwards messages now originate from two threads of the
same MPI process (both the master and the last worker threads). Having MPI communications
inside the OpenMP parallel region is a good attempt to overlap computation and communica-
tion. However, with the current configuration of 24 threads per process, the assigned chunk of
work is too small and the computation is completed much earlier than the communications take
place, so the overlap is not achieved as shown in Figure 31.

Figure 31.: Hybrid xPIC: MPI communications (red and yellow lines) inside OpenMP
parallel regions not overlapping with computations (green phases) of other threads

Serialization effects are still present due to previously unbalanced computations (same effect
observed in the pure-MPI case), as shown in Figure 30b, where yellow lines that represent
peer-to-peer communications between partners are clearly staggered through a dependency
chain delaying the MPI Allreduce collective (pink) that follows.

24(1x24) 48(2x24) 96(4x24) 192(8x24) 384(16x24)

-- Hybrid Parallel efficiency

   -- MPI Parallel efficiency

      -- MPI Load balance

      -- MPI Communication efficiency

          -- Serialization efficiency
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   -- OpenMP Parallel efficiency
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      -- OpenMP Communication efficiency
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Table 12.: xPIC MPI+OMP efficiency metrics.
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The hybrid efficiency model in Table 12 reflects the loss of efficiency in the OpenMP component,
with Parallel efficiency mainly limited by OpenMP Load balance, which drops 17 percentage
points down due to the sequential phase where only the master thread works. When scaling up,
the extrapolation in Figure 32 shows that the hybrid MPI+OpenMP version presents the same
range of good scalability as the MPI case up to ≈6 thousand processes. Yet in comparison,
employing equal amount of resources, the pure MPI version performs more efficiently and
scales slightly better.
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(a) Extrapolation with 5 points (runs from 1x24 to 16x24 threads)

(b) Validation with 9 points (runs up to 256x24 threads; fitting error < 5%)

Figure 32.: Extrapolation model for xPIC (MPI+OpenMP version)
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4.5. NEST+Arbor

NEST+Arbor is a co-simulation application where the simulators operate at different levels of
description: NEST at the resolution of single neurons allowing for simulations of large-scale
neural network models, and Arbor at the resolution of neuronal compartments taking into ac-
count cell morphologies. NEST uses a hybrid parallelization scheme with OpenMP and MPI,
while Arbor uses CUDA for GPU acceleration and MPI for communication between nodes. MPI
is used for communication between the simulators.

NEST was run on the CM, scaling from 1 to 45 MPI processes, and Arbor on the ESB, also
scaling from 1 to 45 processes, using one GPU device per process and mapping 1 MPI rank
per node. The application was executed in weak-scaling mode, with a constant workload of
56250 neurons per node.

With the first traces obtained, a preliminary analysis detected a very fine-grain level of OpenMP
parallelization with trace data that seemed to be produced from additional uninstrumented
threads. This is usually the result of having nested parallel OpenMP regions, an structure that
is not supported by the BSC tools at the time of writing. It is typically found when an OpenMP
application uses lower-level numerical libraries which are in turn also parallelized with OpenMP.
This was reported to the user, and to circumvent this limitation, the decision to capture only the
MPI activity was taken, and new traces were obtained for this configuration. This approach
assumes a perfect OpenMP parallelization, which ultimately results in optimistic efficiencies in
the scalability analysis. But even with this simplification the analysis still provides useful insight
about the application performance. Recently, the user reported back that a bug was discovered
which made NEST to oversubscribe multiple threads on a single core, confirming the effects
that were first detected with the analysis.

Figure 33.: NEST+Arbor measured speed-up for runs from 1 to 45 processes per module

Just by looking at the execution times of the first experiments, we can already anticipate a
severe performance problem that arises when scaling beyond 32 nodes, as shown in Figure
33 by the speedup sharply decreasing to less than 0.4 at 64 nodes, and less than 0.2 at
90. To understand this sudden drop, we can inspect the efficiency model for these scales,
presented in Table 13 and plotted in Figure 34. The hybrid Parallel efficiency, which starts as
low as ≈ 34%, drops down to less than 9% at 64 nodes, being the MPI component the main
responsible for the low baseline, and more specifically, the MPI Communicacion efficiency for
the abrupt decrease when scaling, pointing out a problem with MPI communications. The
second hybrid component shows CUDA Parallel efficiency values bordering the ≈ 60%, but in
CUDA codes these should still be interpreted as good. When parallelizing with CUDA, the host
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2(1+1) 4(2+2) 8(4+4) 16(8+8) 32(16+16) 64(32+32) 90(45+45)

Global efficiency

-- Hybrid Parallel efficiency

   -- MPI Parallel efficiency

      -- MPI Load balance

      -- MPI Communication efficiency

   -- CUDA Parallel efficiency

      -- CUDA Load Balance

      -- CUDA Communication efficiency

-- Computation scalability

33.79 49.76 52.20 51.74 40.45 11.50 5.85

33.79 34.96 33.93 34.89 30.12 8.89 4.55

47.19 54.56 56.76 57.06 49.35 14.91 7.72

54.90 66.15 71.61 69.06 70.19 81.13 86.92

85.96 82.47 79.26 82.63 70.31 18.37 8.88

71.60 64.09 59.77 61.15 61.02 59.67 58.88

71.94 64.52 60.49 61.72 61.94 60.22 59.52

99.52 99.33 98.82 99.07 98.52 99.08 98.91

100.00 142.35 153.83 148.29 134.30 129.38 128.57

Processes (NEST + Arbor)

0

20

40

60

80

100

Pe
rc
en

ta
ge

(%
)

Table 13.: Efficiency model for NEST+ARBOR (small scale optimization enabled)

(a) Global efficiencies: ParEff drops at 64 nodes.
CompSca partially compensates low ParEff.

(b) Hybrid efficiencies: LB does not degrade.
CommEff crashes at 64 nodes.

Figure 34.: Global & hybrid efficiencies for NEST+ARBOR (small scale optimization enabled)

process typically delegates most of the work to the GPU and simply waits for results. Hence,
the amount of work performed by the GPU and the host becomes unbalanced, which accounts
for the low CUDA Load balance measured by our model. Yet, this is inherent to the CUDA
programming paradigm, and efficiency values up to ≈ 50% are to be considered good. The
Global efficiency slightly improves over the hybrid components, benefitting from a reduction
of the computational complexity at all scales with respect to the base case, as pointed by the
Computation scalability values over 100%.

In order to investigate further the problem detected in the MPI communications, we compute
the efficiency model for both components of the modular application. Tables 14 and 15, along
with the corresponding plots in Figures 35a and 35b, show the efficiency model and the decom-
position of ParEff for NEST and Arbor, respectively. Focusing on NEST, its CommEff suffers a
huge drop from 70% to less than 20% at 32 cores (64-nodes run), and less than 10% at 45 (90-
nodes run), revealing that the NEST module is the main responsible for the Hybrid CommEff
crash at this scale when the binaries are coupled. Focusing on Arbor, although we can also see
a significant drop of CommEff at the same scales, the CommEff was already low right from the
start. Thus, the Arbor module is the main responsible for the low baseline of the Hybrid ParEff.
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Table 14.: Efficiency model for NEST (small scale optimization enabled)

Table 15.: Efficiency model for Arbor (small scale optimization enabled)

(a) NEST ParEff factors:
NEST CommEff drop at 32 cores (64-node run)

(b) Arbor ParEff factors:
Arbor CommEff keeps ParEff low from the start

Figure 35.: Parallel efficiency decomposition calculated independently for
NEST and Arbor (small scale optimization enabled)

An in-depth analysis of the traces help us understand where the MPI inefficiencies originate.
Timelines in Figure 36 show views for computations (top) and MPI calls (bottom) for a small
scale execution with 4 nodes (left), and for the execution with 64 nodes (right). Top rows rep-
resent NEST processes, while bottom rows represent Arbor processes plus their GPU stream.
Looking at the timelines for the 4-nodes case, the whole iteration interval is filled with compu-
tations for NEST (green and blue in top rows of 36a). The Arbor host processes are stalling
most of the time in MPI Allgather (pink in bottom rows of 36c) waiting for NEST to finish its
computations, effectively limiting Arbor’s CommEff and refraining the global ParEff from the
start. For the 64-nodes case, Arbor introduces a large serialized computation phase (green
diagonal in 36b) that skyrockets not only the MPI time in Arbor itself, but also drags NEST into
large synchronization stalls waiting for Arbor to finish, causing the sharp drop observed in this
scale in CommEff. Nevertheless, this effect is not exclusive to the larger runs, as the phase
with serialized computations is present in all scales, only that when there are fewer processes
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(a) Computation structure in 4-nodes:
Little useful work in Arbor

(b) Computation structure in 16-nodes:
Serialized computations in Arbor

(c) MPI calls in 4-nodes:
High MPI Allgather time (pink) in Arbor

(d) MPI calls in 16-nodes:
High MPI synchronization time in NEST & Arbor

Figure 36.: NEST+ARBOR computation (top) and communication (bottom) structure
for 4-nodes (left) and 16-nodes (right) runs

involved, the dependency chain is shorter and it is not until it grows that its impact becomes
readily perceived.

With the reported efficiencies at the largest runs, it would not be reasonable to keep scaling
up the current setup of the application any further, thus the extrapolation analysis was not
considered. Instead, feedback of the analysis was given to the user, and they were able to
identify that a certain optimization targeted to improve the application performance in small
scales was activated, which in turn degrades the performance of larger scales. Therefore,
a second batch of traces was produced disabling such optimization, in order to study what
difference does it make and the potential scalability gains.

Figure 37 shows the same plots as before with the efficiency factors for the new use case.
In each plot, the top-level efficiency metric for the previous experiments is also drawn as a
baseline (dotted series) for easy comparison. Figure 37a depicts the Global efficiency that
improves up to 23 percentage points in the larger runs, mainly due to the Hybrid ParEff (Figure
37b) that sees improvements in its factors, the Hybrid LB going up to ≈ 60% (from ≈ 40%), and
a more moderate fall of Hybrid CommEff down to ≈ 40% (previously 20%). With the new setup,
one of the two problems initially detected of having a low baseline Hybrid Parallel efficiency is
significantly improved, by 20 percentage points on average.

Despite the improvement, the second problem regarding the serialized computations in Arbor
is still present in the new setup, with very similar projected trends. We can still appreciate
the decrease in Hybrid CommEff at 64 nodes, which is still more pronounced for the NEST
component (Figure 37c) than Arbor (37d), as the former is heavily delayed by the latter as
discussed before.
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(a) Global efficiencies: Improvements up to
23 percentage points in large runs

(b) Hybrid efficiencies: LB & CommEff
contribute to higher ParEff

(c) NEST ParEff factors: CommEff drop
still present at 32 cores (64-nodes run)

(d) Arbor ParEff factors: Trades LB for CommEff,
still impacted by serializations at 32 cores

Figure 37.: Efficiencies for NEST+Arbor coupled and per-component
(small scale optimization disabled)

Potential improvements towards exascale

In the previous section we have concluded that the biggest performance bottleneck is a large
serialization phase in Arbor that also affects NEST, but we can inspect in the traces how this
effect happens in detail. Figure 38 shows two iterations of the main loop where, simplifying,
both modules have two main phases in each iteration: NEST has a computing phase (A),
followed by a synchronization point (B). Simultaneously, Arbor presents the detected serialized
computations in the host process (C), followed by a CUDA accelerated region with a large
number of memory transfers between the host and the accelerator (D).

The only point of synchronization between NEST and Arbor is at the end of B and D, and B is
elongated because it is waiting for Arbor to finish D. However, if C didn’t exist in the first place,
D would start sooner and run simultaneously with A. Given the amount of work in A and D is
similar (take the same amount of time), both would reach the synchronization phase B at the
same time, effectively eliminating most of NEST’s waiting time. Overall, eliminating C, which is
an improvement for Arbor, would also eliminate B, which is a collateral improvement for NEST.
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Figure 38.: 2 iterations of the 64 node run showing Arbor’s serialization at large scales

This scenario was simulated with Dimemas by setting the length of computations in phase C to
0, which completely eliminates these computations assuming them to be negligible, and makes
this phase disappear. The study was performed for the two experiments that present this effect
more severely, at 64 and 90 nodes. Timelines in Figure 39 show the impact on NEST, where
we see a reduction on the simulated execution of ≈ 90% of the MPI time (orange), (39b) and
of ≈ 33% of the total execution time. As we see in the image, the synchronization phase B
cannot completely disappear and is more significant in some iterations than others due to small
imbalances between the computing phases A and D.

(a) 2 iterations of the main loop of NEST in the original 64-nodes run

(b) MPI Allgather (orange) reduced by ≈ 90% for an iteration time improvement of ≈ 30%

Figure 39.: Comparison of original and simulated run at 64 nodes
showing the effect on NEST of removing Arbor’s serialization
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Figure 40.: Efficiencies for NEST+Arbor simulating non-existent Arbor serialization
in 2 last experiments (64 and 90 nodes)

(a) Global efficiencies: Up to 45 percentage points
improvement due to Hybrid ParEff

(b) Hybrid efficiencies: Better Hybrid ParEff due to
CommEff no longer dropping and improved LB

(c) NEST ParEff factors: Up to
≈ 60 percentage points improvement

(d) Arbor ParEff factors: Up to
≈ 30 percentage points improvement

Figure 41.: Efficiencies for NEST+Arbor coupled and per-component
simulating non-existent serialization in 2 last experiments (64 and 90 nodes)

All in all, efficiencies are greatly improved at all levels of the coupled application as shown
in Table 40 for the global efficiency metrics, and Tables 40b and 40c for NEST and Arbor
respectively. Compared to the initial use case, Arbor sees an improvement of ≈ 40 percentage
points in ParEff, but the major beneficiary is NEST with twice as much improvement up to
≈ 80 percentage points. The plots in 41 show the efficiency metrics compared to the second
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use case with the optimizations for small scale disabled, and present ≈ 30 percentage points
improvement in ParEff for Arbor, and again twice as much for NEST.

With the serialization problem resolved, it would now be reasonable to try scaling up to a larger
number of nodes. Figure 42 presents a very preliminary extrapolation analysis of the projected
efficiencies that we would potentially find at larger scales. This has to be very carefully con-
sidered, as the extrapolation is computed from the two simulated experiments (2 points) only,
and further validation points at larger scales to ensure the correctness of the projection are not
available, thus there is no actual guarantee that the application will certainly exhibit the depicted
trends. However, under the pessimistic assumption that all efficiency factors would degrade fol-
lowing an Amdahl’s fit, the extrapolation highlights CommEff as the main limiting factor in the
exascale. In this weak-scaling scenario, the number of communications per process remains
constant. But with the increasing scale, the total number of communications also increases,
as so slightly does the total volume of transferred data, until at some point network contention
may become an issue. Starting from the current scale, the application would maintain good ef-
ficiency values at least for two additional orders of magnitude, before the impact of the network
would start to be noticeable.
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Figure 42.: Extrapolation model for NEST+Arbor with 2 points
(simulated runs at 64 & 90 nodes) predicting good scalability up to 10k processes
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4.6. NextDBSCAN

NextDBSCAN is a new implementation of the DBSCAN clustering algorithm, which uses a
novel data-structure suitable for all types of parallel processing, optionally including GPGPU
accelerators. It is capable to perform very fast data partitioning and comparison in parallel.

Table 16 shows the global efficiencies measured for a hybrid MPI+OpenMP version running on
the CM from 1 to 44 nodes, mapping 1 MPI rank per node. It stands out that the application
has a sudden change of behavior at the scale of 4 nodes, as the Computation scalability drops
by 25 percentage points, being indicative of 25% more instructions than in previous scales that
stabilizes from this point forward. This effect is related to an iterative algorithm that repeats until
reaching the convergence of cluster labels across all nodes. Labels are assigned concurrently
but can vary across nodes. The more nodes, the higher the chance of a deeper label depen-
dency which causes more iterations than the same problem with lower cardinality. If the result
contains a low number of clusters, the chances of this occurring are greatly reduced, however,
the opposite applies for a high number of nodes and clusters. For our study, we assumed that
this replication would not reappear in larger scales.

24(2x12) 48(4x12) 96(8x12) 192(16x12) 384(32x12) 768(64x12) 1056(88x12)

Global efficiency

-- Parallel efficiency

-- Load balance

-- Com m unicat ion efficiency

-- Com putat ion scalability

-- IPC scalability

-- Inst ruct ion scalability

-- Frequency scalability

99.46 99.37 73.80 73.73 73.65 73.66 73.53

99.46 99.74 99.67 99.57 99.47 99.42 99.23

99.47 99.84 99.81 99.73 99.69 99.62 99.50

100.00 99.90 99.86 99.84 99.78 99.80 99.73

100.00 99.63 74.05 74.04 74.04 74.08 74.10

100.00 99.63 99.96 99.93 99.94 99.99 100.01

100.00 100.00 74.11 74.10 74.10 74.10 74.11
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Table 16.: Global efficiency model for NextDBSCAN

Except for this increase of instructions, the model reports very high values for all efficiency fac-
tors with just a very slight degradation, mostly perceptible in the Load balance and Serialization
of the MPI component, as shown in Table 17.

24(2x12) 48(4x12) 96(8x12) 192(16x12) 384(32x12) 768(64x12) 1056(88x12)

-- Hybrid Parallel efficiency

-- MPI Parallel efficiency

-- MPI Load balance

-- MPI Com m unicat ion efficiency

-- Serializat ion efficiency

-- Transfer efficiency

-- OpenMP Parallel efficiency

-- OpenMP Load Balance

-- OpenMP Com m unicat ion efficiency

99.46 99.74 99.67 99.57 99.47 99.42 99.23

99.52 99.82 99.75 99.66 99.57 99.55 99.37

99.52 99.92 99.89 99.81 99.77 99.74 99.62

100.00 99.90 99.86 99.85 99.79 99.81 99.74

100.00 99.91 99.86 99.86 99.80 99.83 99.78

100.00 100.00 100.00 100.00 99.99 99.98 99.96

99.94 99.92 99.92 99.92 99.90 99.87 99.86
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Table 17.: Hybrid efficiency model for NextDBSCAN
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The very high efficiencies can be understood by looking at the structure of the application in
Figure 43a, where we see four computing steps that dominate the > 99% of the execution, with
communications taking < 1% of the time. In this situation, the small inefficiencies produced by
communication stalls and transfers are almost negligible, hence the high reported efficiencies.
The communication phases between computation regions employ collective operations only,
with MPI Allreduce called twice in each phase, and a preceding call to MPI Allgather in the
first phase only, as shown in Figures 43b and 43c. We can easily see how the first elongated
collective is absorbing imbalances in the previous computations, while the subsequent is very
fast, yet it is not very significant as the percentage of imbalance is < 1%.

(a) Four computing phases with a 20% variation
between the shorter (green) and the larger (dark blue)

(b) MPI Allreduce (pink) phase at the end of each the computing step

(c) Additional MPI Allgather (red) phase at the end of the first computing step

Figure 43.: NextDBSCAN structure for a 44-node run

Extrapolation analysis

We run the extrapolation model considering two possible evolutions for the scaling of the appli-
cation, the first hypothesis considers Load balance will keep degrading slowly, continuing the
trend observed in Table 16. This supposition, plotted in Figure 44a, results in the application
being able to scale three orders of magnitude from the baseline, up to ≈ 100000 processes,
with high efficiencies (above 70%).
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(c) Validation with 5 points (runs up to 1056 processes, fitting error < 0.2%)

Figure 44.: Extrapolation model for NextDBSCAN

However, with the minimum variability that Load balance presents at the measured scales
(< 0.5%), this assumption might be too pessimistic, therefore we consider a second scenario
supposing Load balance will not degrade any further with the scale. This hypothesis, plotted
in Figure 44b, results in the application scaling up to ≈ 100000 processes with even higher
efficiencies (above 90%), and reaching almost 500000 processes with efficiencies higher than
65%.

Both models validate with an error< 0.2% (Figure 44c) with the available data, but to confirm the
real evolution the application will exhibit would require to obtain at least one more measurement
at larger scale. Nevertheless, these two projections, that diverge no more than 2 seconds,
can be seen as lower and upper boundaries for the actual trend, which will most likely fall
somewhere in the middle.
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Potential improvements towards the exascale

With the projected efficiencies in the large scale in the range of 70 − 90% after increasing the
number of processes by a factor of 1000× (100k processes), and also bearing in mind the appli-
cation was run in strong scaling mode, which means the ratio of computations/communications
will keep inevitabily decreasing and the Communication efficiency with it, we can consider that
the application is already scaling very well and is ready for the exascale.

Nevertheless, we analyze the traces to understand the main limiting factors highlighted by the
models, and suggest potential improvements. The plots in Figures 45a and 45d show a cluster
analysis [53] of the computing regions (running phases) in the instrumented traces for 32 and
44 nodes. Computations are grouped according to the amount of instructions executed (y-axis)
and at which speed (x-axis).
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Figure 45.: Clustering analysis for NextDBSCAN showing the structure of computations
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The application exhibits 3 main behaviors (clusters 1 to 3), that differ by ±18% on instructions
and by ±8% on IPC. Cluster 1 (top-right), represents computations that do a high amount of
work at high speed. Similarly, cluster 3 (bottom-right), represents phases with lower amount of
work at the same speed. The less efficient computing phases are those represented by cluster
2 (top-left), with the same amount of work as cluster 1, but lower speed. More interestingly,
the clusters present an elongated shape in the x-axis, meaning that all computations in the
program present IPC variability. A closer inspection of these 3 behaviors, reveals that there are
actually two trends in the amount of instructions (clusters 4 to 6). The distribution over time
in Figures 45b and 45e shows multiple clusters executing simultaneously, hinting at potential
imbalances due to variable characteristics on different threads.

The instructions variability is structured, as the threads that execute more instructions are al-
ways the same in all computing phases, but they vary depending on the scale. For instance,
in the execution with 32 nodes, the first 3 threads of every process have more work, resulting
in cluster 6 systematically finishing later than cluster 3, as seen in Figure 45c. Contrarily, in 44
nodes the last thread has less work than all others. This change in work balancing suggests
the load distribution algorithm is not able to split the problem into more equitative chunks.

However, with variabilities both in instructions and IPC, we also see cases where threads with
less work are one of the last to finish because they achieved lower IPC, as shown in Figure 45f,
where some instances of cluster 5 take longer than cluster 2. Both effects combined result in
the inflated collectives in the communication phases initially detected (Figures 43b and 43c),
and contribute to the slow degradation of the Parallel efficiency.

The variabilities are particularly meaningful because they grow with the scale. This is shown
in Figure 46 that depicts the average, minimum and maximum IPC and instructions for cluster
1 computations, where it is clearly seen that the distance between the extremes keeps grow-
ing. Although the dispersion will not keep increasing forever, this evolution suggests that the
variabilities will have a higher impact in larger scales before stabilizing.

The increase in variability affects the whole program as shown in Figure 47. This plot is the
result of a tracking analysis [54] and shows how the clusters evolve with scale. Clusters are rep-
resented by their centroids (circles) and their perimeter (rectangles). The trajectory the clusters
follow from top to bottom, represents the increments in the scale. The movement downwards
(instructions y-axis), indicates that the number of instructions per process is reduced propor-
tionally and scales perfectly. The fact that perimeters get wider indicates that the variability
grows, and all parts of the program show the same behavior.

The next step would consist in analyzing the source of the variability in IPC, both within clusters,
to achieve better balanced computations at higher scales; and between clusters, ideally to
accelerate cluster 2 to the same level as clusters 1 and 3, as this easily represents one quarter
of the total execution time and even a modest increase in speed would have a positive effect. It
is important to ensure that the number of instructions does not increase on higher node counts
due to the labels convergence algorithm, as this results in a whole phase replicated which
drastically reduces the Computation scalability efficiency. As long as it is not affected by this
instruction increase, this code exhibits close to perfect scaling up to 1000×.
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(a) Minimum, average and maximum IPC per scale

(b) Minimum, average and maximum instructions per scale

Figure 46.: NextDBSCAN Cluster 1 computation variability increasing with the scale

Figure 47.: Tracking analysis for NextDBSCAN showing the evolution of all computing regions
from 4-nodes (top) to 44-nodes (bottom) with increasing variability
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4.7. EC-EARTH

Albeit not being part of the DEEP-EST project, the EC-EARTH model presents as an excellent
candidate to study the scalability of the modular prototype. EC-EARTH is a global, coupled
climate model that consists of the separate components IFS for the atmosphere and NEMO for
the ocean that are coupled and can be used with a number of optional modules.

This structure fits perfectly with the design philosophy of the DEEP-EST system, enabling a
very flexible configuration where application modules with different compute requirements can
employ the most suitable system modules to maximise performance. Moreover, this study
demonstrates how external applications can benefit from the DEEP-EST modular architecture.

For the analysis the user suggested a use case running 4 pure MPI binaries, comprising the
NEMO ocean simulator and the IFS atmosphere simulator, coupled through the Runoff map-
per component and using XIOS I/O servers. Due to limitations during the deployment of the
prototype at the time of the experiment, all binaries were run homogeneously on CM nodes,
although it would have been interesting to place IFS on DAM nodes due to lower computation
but higher memory footprint requirements. Instead, we circumvent this limitation by simulating
the execution of IFS on DAM to study the potential benefits.

The details of the experiment follow:

• NEMO run with ORCA1L75 LIM3 input, scaling from 24 to 384 processes

• IFS run with T256L91 input, scaling from 24 to 576 processes

• XIOS I/O servers run with 24 processes on a dedicated node

• RNF run with 1 process on a dedicated node

• Coupling frequency set to 2,700 seconds and simulating 12 hours from 1990-01-01T0000

The user informed that with the selected configuration the application runs in strong scaling
mode, up to a maximum of few thousand processes distributed either in a ratio of 1 NEMO to 1
IFS for small use cases, or in 2 NEMO to 3 IFS for large use cases. We took into account this
insight into our study and computed the efficiency model for both process ratios.

The efficiency models for the series of experiments with ratio 1:1 and ratio 2:3 presented in
Tables 18 and 19 report low Parallel efficiency values, mostly affected by Load balance. This
gets partially compensated by Computation scalability efficiencies over 100%, caused by an
over-proportional reduction of the total executed instructions when the scale is increased. For
an easier comparison, Figure 48 plots the Parallel efficiency components, showing better Load
balance with ratio 2:3 in small scale, which does not result in a better Parallel efficiency than in
ratio 1:1 due to the effect of communications.

For the in-depth analysis we selected the use case with ratio 1:1 and 313 processes (144 for
both NEMO and IFS), as it is the case where Parallel efficiency first drops below 50%.
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Table 18.: Efficiency model for EC-EARTH (ratio 1:1)

Table 19.: Efficiency model for EC-EARTH (ratio 2:3)
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(a) Ratio 1:1, runs from 73 to 313 processes
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(b) Ratio 2:3, runs from 85 to 385 processes

Figure 48.: Comparison of measured Parallel efficiency factors
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Per-component efficiency analysis

To understand the source of the low Load balance values it is essential to discern whether
they originate from problems regarding the coupling of the application modules, or they come
from imbalance issues affecting one, or more, of the components internally. To this end the
efficiency model can be calculated not only globally (considering all components together), but
also to each of the components individually. Table 49c shows the per-binary decomposition of
the model efficiencies. While global Load balance is low (63%), the individual values reflect
very good (89−96%) internal balancing. This indicates that the low global Load balance comes
not from any particular component, but from the global coupling between them. The Runoff
mapper stalls waiting for NEMO and IFS to synchronize in every step thus, the very low Parallel
efficiency in this module is actually positive, meaning that it needs to do very little work once
synchronized and does not hinder NEMO and IFS from progressing. However, we can observe
that both IFS, and specially NEMO, present low Communication efficiency at the internal level.

Focusing on these two compute intensive modules, timelines in Figure 49 show the structure
of one step of the execution. Figure 49a shows the computation phases for the 4 binaries,
with NEMO having a large black gap at the end of the step, and IFS having 3 black gaps
throughout the iteration (red boxes). Black gaps correspond to MPI waiting times generated by
one binary finishing its computations before the other, as can be seen in Figure 49b that shows
the communication pattern where communication lines between NEMO and IFS are pictured in
yellow.

(a) Structure of computations

(b) MPI communications
(c) Decomposed efficiencies per component

Figure 49.: One iteration of EC-EARTH run with 144 NEMO processes and 144 IFS processes

Given that IFS has large waiting times for NEMO, it follows that, if computations on IFS were
run on a slower CPU, it would reach the communication phase later and thus, waiting times
would be reduced. Additionally, we would benefit from the potential reduction in power con-
sumption from using a slower, more power efficient CPU. This scenario fits in the DEEP-EST
architecture as the DAM CPU is slower than the one in the CM. We used Dimemas to simulate
this configuration, which in turn also affects communications from NEMO to IFS as we move
from CM-to-CM, to CM-to-DAM communications with reduced latencies (refer to Table 8).

The simulation results in reduced communication times thanks to the DAM network (50a), as
well as a decrease in the total execution time by roughly a 14%. IFS waiting times (black gaps)
are also reduced as expected. Consequently, Communication efficiency improves both for
NEMO and IFS as shown in Table 51b, and impacts positively in Parallel efficiency.
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However, NEMO waiting time at the end of its computation phase is still present and even
aggravated due to the slower CPU running IFS. This suggests to accelerate key kernels such as
the long computing region colored in dark blue at the end of the IFS execution. The simulation of
this scenario with Dimemas reports reduced total execution time by an aggregated 19% (Figure
51a) as well as better Parallel efficiency and Communication efficiency for NEMO (51b]). Albeit
NEMO still waits for IFS, accelerating its long computations further would not result in any
benefit as the execution is now bound by XIOS.

(a) Computation structure
(b) Decomposed efficiencies

Figure 50.: One iteration of EC-EARTH simulating IFS running on DAM

(a) Computation structure
(b) Decomposed efficiencies

Figure 51.: One iteration of EC-EARTH simulating a key computing kernel accelerated

Extrapolation analysis

One concern of the users regarding global Load balance is related to the fact that the ratio
between NEMO and IFS processes may affect the results and hinder scalability. To study this
we ran the extrapolation analysis considering both NEMO:IFS ratios (1:1 and 2:3).

The extrapolation was computed with 5 points, up to 313 processes for the 1:1 ratio, and up to
385 for the 2:3 ratio; and validated with 8 points, up to 1168 / 1360 processes respectively and
are shown in Figure 52. The projected trends for the relevant metrics are depicted in Figure
52a in which we can observe changes in behavior starting at a few hundred processes, where
the most limiting factor to the Parallel efficiency alternates between Load balance and Transfer,
depending both on the scale and the NEMO:IFS ratio. Overall, Load balance and Transfer
compensate each other and the resulting Parallel efficiency for the two different ratios is very
similar, although ratio 2:3 achieves marginally better Parallel efficiency at small scales, while
ratio 1:1 does so at larger scales, enabling to scale efficiently slightly further.
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Figure 52.: Extrapolation model for EC-EARTH comparing Parallel efficiency and
Load balance between 2 different ratios of NEMO:IFS
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4.8. Conclusions

In the context of performance models, Task 2.3 has contributed with the analysis of the project’s
applications based on the BSC efficiency model, also extending its applicability to hybrid and
modular codes as the main target of the DEEP-EST architecture. The model evaluates whether
parallel applications make an optimal use of the resources, characterizing the performance
using multiplicative fundamental factors. These reflect the main sources of inefficiencies that
hinder an application’s scalability stemming from the use of a parallel runtime, namely load
balance, data transfer and serialization issues. It also considers those derived from the scaling
of the computations, such as variabilities in the amount of work, or the speed at which the work
is done. These factors are expressed in values between 0 − 100%, where 80% is usually the
boundary considered for good efficiency, and are measured from traces of real executions.

With the objective of gaining insight of the application’s performance in the exascale, the pro-
posed methodology extends the analysis of the efficiency factors with extrapolation models.
The extrapolation technique consists in projecting to the large scale the evolution of the effi-
ciency factors, based on the trends exhibited at small scale. To accurately predict the behavior
at several orders of magnitude higher than the measurements, it is important to validate the
model with non-instrumented runs, ideally halfway to the target scale. However, due to the size
of the DEEP-EST prototype, we have been limited to take measurements in the range of few
hundreds, and conduct validations up to few thousand processes only, which is still very far
from the exascale. For this reason, we complemented the extrapolation models with in-depth
analyses of the traces to better understand the model’s projections and corroborate that the
observations for the large scale are reasonable.

Another important contribution has been to hint application developers with potential improve-
ments to overcome the inefficiencies that would hinder performance at larger scales. To this
end, we characterized the DEEP-EST architecture and simulated scenarios that estimate the
benefits of some of the suggested changes, mostly targeted at removing imbalances, reducing
dependency chains and accelerating key kernels. These simulations do not consider the com-
plexity of implementing the necessary changes, but rather provide quick estimates and overall
trends to assess the potential for improvement beforehand.

Well aligned with the project’s objectives, NEST+Arbor is the main application we had access
to that clearly presents a modular structure. While other codes have implemented their own
modular versions during the project, these were not considered as they were still undergoing
major development at the time of analysis. To gain a more solid understanding of the advan-
tages and complexities of the modular architecture, we ported to the prototype the EC-EARTH
climate model to have another good example of modular code, demonstrating the benefits of
the DEEP-EST architecture for external applications.

From the study of modular applications, a lesson learned is that combining modules with very
different structures makes it difficult to achieve a good Load balance between them. As each
module usually operates on very different workloads, we mostly observe that balancing is not
so equitative, and typically one module does more useful work than the others, generating de-
pendencies between them. Moreover, these become critical when a single module experiences
any kind of delay as it gets propagated to all processes of the dependent modules. This effect
could be seen in Arbor, where a serialization in a computing region misaligns the communica-
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tion phases with NEST, which suffers a side effect of inflated stalls that can only be fixed by
solving the original issue, for a reduction of the total iteration time of up to ≈ 33%. This is a good
example of how an issue on a single module can impact other’s efficiencies, and eliminating
the problem on one side benefits all parties involved.

These effects are likely to be magnified in applications composed of even more modules, for
example in EC-EARTH the main computing modules present circular dependencies, and they
rely in turn on the I/O server, escalating the common problem of serializations between indi-
vidual processes, to a bigger problem of serializations between whole modules. To this extent,
the flexibility of the DEEP-EST modular architecture can help to mitigate these dependencies
by redistributing the application’s components across the different system modules according
to their computational needs. A proper placement of EC-EARTH components, that seeks to
map the more compute intensive processes to faster CPUs, was able to reduce the execution
time by 19%, and increase efficiency from 50.02% to 65.41%. Furthermore, the ability to run key
kernels on clusters with GPUs proved accelerators to be a powerful tool not only to speed up
computations and improve time to solution, but also to achieve better balance between mod-
ules by reducing stalls in the critical path. The nature of modular codes aligns very well with the
DEEP-EST architecture, providing high flexibility to adapt the executions to the specific needs
of the codes.

GROMACS does not strictly fall within the modular category even though it is an MPMD applica-
tion combining two types of processes, because they are highly coupled and communicate very
frequently. For this case, we studied the impact of different process balancing configurations,
and the analysis showed that fine-tuning the process ratios can improve Parallel efficiency up
to 9 percentage points for the 32× case, from 47% to 56%. However, we also identified that
it is precisely because the frequent coupling that the application is very sensitive to small de-
lays in the computations due to small IPC variations that most likely respond to system noise,
which hugely impact the waiting times in the MPI phases as the communication pattern is highly
connected and any single delayed partner affects many others.

The communication pattern plays an important role in propagating or absorbing this kind of
variabilities that are often dynamic and reported as Serialization issues. Both in the pure-MPI
and the hybrid MPI+OpenMP versions of xPIC, once again we identified sporadic delays in the
computations that snowball through a chained communication pattern, where every process
needs to wait for their predecessor before sending to the next partner, thus the later in the
chain, the higher waiting times. This problem can be mitigated either by improving the bal-
ance of the computations, or by redesigning the communication pattern. For the former we
estimated a benefit up to 53 percentage points, from 41.45% to 94.81% in Parallel efficiency
at one particular phase that is heavily dominated by communications. However, this approach
might not be easy depending on the source of the imbalances. It is an interesting reflection
that these effects of punctual delayed computations due to slightly reduced IPC, cycles or fre-
quency will grow in the exascale. The increasing use of technologies like CPU power saving
features, dynamic frequency scaling, multithreading and resource sharing; the increasing use
of system and monitoring daemons in HPC centers; and even the random hardware failures in
increasingly larger clusters; are all examples that can result in one or few processes underper-
forming. If these effects are unavoidable and difficult to control by the users, then is important
to mitigate them and prevent that they impact many other processes. To this extend, changing
the structure of communications can break the dependency chains, or at least minimize their
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repercussion. Design patterns like overdecomposition, non-blocking communications or spec-
ulation [51], aiming at increasing asynchronicity, can be useful to absorb the accidental delays
that will be more harmful on exascale platforms.

Incorporating thread-level parallelism into MPI applications is a natural approach to accelerate
regions bound by long computations, but it is important to remark that faster does not neces-
sarily imply more efficient. We find an example of hybrid MPI+OpenMP in xPIC, where the
addition of OpenMP leaves a serial region unparallelized at the thread level that covers 17%
of the iteration time. Even if the number of threads available per node is small, the large num-
ber of nodes that would be required for exascale systems will result in a very high number of
resources wasted.

The design trend towards exascale platforms mostly consists in machines with a massively
higher number of nodes than cores within a node. For instance, the Fugaku pre-exascale sys-
tem, current leader in Top500 [52], is built with 48 cores per node, but more than 150 thousand
nodes, a difference of four orders of magnitude. As the typical process mapping will place 1 or
2 MPI ranks per node and fill the rest of the cores with threads, the prevalence of high node
counts reduces to some extent the impact of thread-level parallelism performance, and puts the
spotlight on having efficient communication between nodes, guiding where optimization efforts
should be mainly directed.

In our experiments the Transfer efficiency attained most significance on larger scales. On the
analyzed weak-scaling scenarios, where the workload per process remains constant, the num-
ber of communications and even the volume of transferred data increases proportionally with
the scale. Thus, a low Transfer usually becomes an indicator of at which point the application
may start experiencing network congestion issues. On strong-scaling scenarios, the proportion
of computation per process keeps decreasing with the scale, eventually becoming negligible
and communications dominate the execution. A low Transfer in this case usually highlights at
which point we should stop scaling, or quite the opposite, increase the problem size to make
good use of additional resouces. Generally speaking, keeping a high ratio of computations
over communications is a safe approach to scale efficiently so as to downplay the relevance of
network performance. We find an example of this in NextDBSCAN, an embarrassingly parallel
problem where little communication is needed between parallel tasks, and the small variabilities
in the computations that dominate over 99% of the execution time have a negligible impact.

In order to fully exploit the potential of the platform, it is crucial to understand the structure of
the applications. To this end, performance analysis tools are very useful to gain detailed insight
on the application’s behaviour, and the main factors that hinder efficient scaling and how to
improve them. Continuous hardware improvements in the architecture, either in the form of
faster CPUs, memories or network, will always report benefits, but will not necessarily result in
making a more efficient use of the resources. With the experienced gained from the analysis of
multiple use cases, we have provided users with numerous hints on what are the most frequent
problems they will encounter to run their codes efficiently as we move to increasingly larger
platforms. This information will help to make more educated choices on how to design the
algorithms, select proper configurations and suitable resources to maximize the efficiency of
their experiments, as there is a lot to gain just from tuning the software.
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5. Energy modeling

The main idea about obtaining a model consists of trying to reproduce a certain behaviour
given a set of variables, that is, it is a question of comparing a behaviour (in our case the real
curve of energy consumed by an application) with the result obtained after reconstructing this
behaviour with a smaller set of variables. Depending on the way we choose this smaller set
of variables, we can obtain a better approximation between the real energy consumption curve
and the curve projected by the model.

In the past deliverable D2.2 ([3]) the micro benchmarking to be used, the data acquisition to
feed and test the model, the possible variables on which the energy models would be based
were introduced and the first theoretical concepts on the methodology of variable reduction
on which the mathematical models should be based were defined and finally different sets of
variables (and therefore different mathematical models) were presented.

Auweter et al. [30] described a model for energy aware scheduling optimizations for Intel Sandy-
Bridge architecture based on a base frequency selected for an entire application. The model
implicitely assumes that the energy can always be described as a linear combination of had-
ware perfomance components. That equation 5.1 is applied for a fixed frequency n and predicts
the power consumption for any frequency from the available ones.

PWR(fn)

PWR(f0)
=MF,C ∗ PC,1 (5.1)

The expression can be rewritten in a matrix multiplication notation as follows:

M =
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F×C
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GIPS(f0)
1
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CPI(f0)

GL3PS(f0)
GL3PS(f0)
GIPS(f0)

GL2PS(f0)
GL2PS(f0)
GIPS(f0)


C×1

(5.2)

where,

• f0 is the nominal/default frequency,

• fn is the frequency on study,

• F is the number of frequencies (=16 in our current study),

• C is the number of hardware events (=8 in our current study, from Ai until Hi), and

• MF,C is the coefficients matrix result of a linear regression procedure,

• P is the vector of the values of the elected components measured at nominal/default
frequency.

The idea behind this model is to run the application at reference frequency measuring the
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value of the hardware counters which will be represented under the P vector. This vector P
remains constant for the application at reference frequency for the system. The matrix M is
machine dependent and defines the contribution of each component to the total energy use
regarding the energy consumption. The expression allows us to project the energy consumed
at any available frequency of the system from a reference frequency, in which the coefficient
were calculated. Of course, the model could fit differently by choosing a different reference
frequency, since the software behaviour is also different.

From the writting of the deliverable D2.2 ([3]) until today a lot of effort and progress has been
made within the calculation of the energy models proposed for the project in the framework of
the DEEP-EST project.

5.1. Data input

The micro benchmark consists of different test cases which are encapsulated between PAPI
(Performance Application Programming Interface) library function calls. This implies, that only
events during the runtime of the test case in particular are measured. No other processes
contributes to the energy consumption of the application.

The PAPI events set, which will be measured for every run of the benchmark, consists of:

1. Computational intensity related events:

• Cycles: number of cycles elapsed during the execution of the test case.

• Instructions: number of instructions executed by the test case.

• Double precision scalar flops: number of flops related to 64 bit registers measured
during the run of the test case.

• Double precision 128-bit flops: number of flops related to 128 bit registers measured
during the run of the test case.

• Double precision 256-bit flops: number of flops related to 256 bit registers measured
during the run of the test case.

• Double precision 512-bit flops: number of flops related to 512 bit registers measured
during the run of the test case.

2. Memory usage related events:

• L1: L1 cache misses count.

• L2: L2 cache misses count.

• L3: L3 cache misses count.

The idea is to, following a certain methodology, choose the components of the vector P of the
expression shown in 5.2.

In order to compare the energy and time projected by the model, it is also necessary to measure
the time and energy (or power) consumed by each test case during its execution:

• Package power/energy: power/energy consumed/used by each of the processor sockets
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during the execution of the test case.

• DRAM power/energy: power/energy consumed/used by each of the DDRAM modules
during the execution of the test case.

• Runtime: Time elapsed between the beginning and end of the test case.

In total 18 events were measured per test case; each of the measured components can be
considered to represent a dimension/axis in space. The union of all these dimensions results
in the energy curve used by the application as a function of each of the components. The
measured energy of every register is a point in this multidimensional space.

Since there is the possibility that several components are related to each other (e.g. cycles,
instructions and frequency, or memory bandwidth, and last level cache misses), we must look
for the set of linearly independent dimensions that define the same space, while losing as little
information as possible. This is exactly the motivation of the Principal Component Analysis
(PCA) methodology.

PCA is a dimensionality-reduction method that is often used to reduce the dimensionality of
large data sets, by transforming a large set of variables into a smaller one that still contains
most of the information in the large set. Reducing the number of variables of a data set naturally
comes at the expense of accuracy, but the trick in dimensionality reduction is to trade a little
accuracy for simplicity.

5.2. PCA methodology

As discussed in deliverable D2.2, for the data adquisition we used a modified version of the
APEX-MAP benchmark that generates artificial calculations and memory accesses. The ini-
tial idea of the Apex project is the assumption that the performance behaviour of any scientific
application can be modelled by a set of specific performance factors. Thus, combining these
factors, applications that avoid hardware specific models can be designed to simulate typical
application performance. Taking into account that the two most dominant performance factors
are memory accesses and computational intensity, this benchmark simulates typical memory
access patterns of scientific applications. The final goal of this benchmark is to simulate com-
pute and memory bound applications. The modified version of the APEX-MAP includes different
test cases whose behaviour simulates different memory accesses and computational intensity
patterns depending on the input parameters of the application.

PCA is one of the most popular multivariate analysis method. The goal of PCA is to summarize
the information contained in a multivariate data by reducing the dimensionality of the data
without loosing important information. It allows to summarize and to visualize the information in
a data set containing individuals/observations described by multiple intercorrelated quantitative
variables. Each variable could be considered as a different dimension. Having more than 3
variables in a data set, make it very difficult to visualize them in a multi-dimensional hyper-
space.

PCA is used to extract the important information from a multivariate data table and to express
this information as a set of few new variables called principal components. These new variables
correspond to a linear combination of the originals. The number of principal components is
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less than or equal to the number of original variables. The information in a given data set
corresponds to the total variation it contains. The goal of PCA is to identify directions (or
principal components) along which the variation in the data is maximal.

The dimension reduction is achieved by identifying the principal directions, called principal com-
ponents, in which the data varies. PCA assumes that the directions with the largest variances
are the most “important” (i.e, the most principal). In the end the eigenspaces of M has to be
identifyed and then select the ones with the largest eigenvalues.

In the figure below, the PC1 axis is the first principal direction along which the samples show
the largest variation. The PC2 axis is the second most important direction and it is orthogonal
to the PC1 axis. The dimensionality of the two-dimensional data can be reduced to a single
dimension by projecting each sample onto the first principal component (Plot 1B). So the prin-
cipal components algorithm can be seen as a space change formed by orthogonal axis which
are redefined as the ones which have a largest correlation with the original data.

Figure 53.: Representation of a certain information in the original base and its transformation
into the new space.

The amount of variance retained by each principal component is measured by eigenvalues
of the data. Seeing the data as a matrix in which the observed events and the frequency are
related, the eigenvalues determines if certain columns of this matrix are correlated; if the eigen-
value is zero (or close to a low threshold), we can assure that this column (hardware events)
is related to the other ones and herefore, the information provided by the hardware event is
duplicated. Thus, this column (axis) can be eliminated from the matrix without loosing a lot of
information. This is exactly the dimension reduction associated to the PCA methodology. By
repeating this process with all axis pairs, the redundant information of the entire data space will
be known and therefor the components that can not be eliminated from the model expression.

But, how many components must be removed so that not too much information is lost? That
will depend on how correlated the information in the data space is; of course, every dimension
provides information to the global system and there is no way to reproduce the original infor-
mation with 100% accuracy. In order to depict the concept, PCA was applied to face images
shown in figure 54. Later, the information of the faces was reconstructed using more or less
components. The result can be seen in the image 54.
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Figure 54.: Example of PCA methodology applied to face images.

Figure 55.: Contribution of each principal component to the global information explanation.
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We can apply the same procedure to the methodology for calculating the energy models. The
example depicted in figure 55 shows the contribution of each principal component to the model,
which means, the information that can be additionally explained by adding new principal com-
ponents. This was made for a particular data information collected for the calculation of the
energy model but serves as an example that every new component contributes less to the in-
formation explanation. In theory, in that particular example, if we want to stay below the 3%
error, we should select the first eight principal components, since in that case, the accumulated
percentage of information that can be explained reaches 97.1% of the total.

Applying this ideas to the CPU model calculation methodology, after the components reduction,
we got that the PCA set should contain these 5 counters:

• Instructions: number of CPU instructions executed.

• L2 cache misses: amount of CPU L2 cache misses.

• L3 cache misses: amount of CPU L3 cache misses.

• Double precision flops: number of double precision floating point operations.

• Vectorization per cycle ratio: ratio of number of double precision floating point operations
using 128-bit, 256-bit and 512-bit vectorization per CPU cycle.

Similary, the GPU model will be based on the following counters:

• Instructions: number of GPU instructions executed.

• Cycles: number of GPU cycles performed.

• L1 cache misses: amount of L1 cache misses.

• L2 cache misses: amount of L2 cache misses.

• Bandwidth: memory bandwidth.

• Double precision flops: umber of double precision floating point operations.

5.3. Model validation

As explained in previous deliverables, we used a modified version of the APEX-MAP bench-
mark, since this microbenchmark includes different test cases whose behaviour generates dif-
ferent memory accesses and computational intensity patterns depending on the input parame-
ters of the application. The complete input set for the modelling procedure corresponds to:

• Five different binaries according to the five different sets of compilation flags (O0, O3+msse4.2,
O3+xAVX, O3+AVX2, O3+AVX512). 1

• All system available frequencies (fifteen or sixteen depending if turbo enabled or not).

• Forty different experiments per test case.

• Eighteen hardware counters and events.

1The model calculation and model validation has been performed on intel machines. For non-intel/AMD machines,
the correspondent compile flags should be used.
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In total there are 6480 records (experiments) each consisting on 25 parameters (compilation
flags set, configured fixed frequency, elapsed runtime, input parameters for the patterns sim-
ulation and the values of the monitored hardware events). From this amount of experiments,
the information of half of them will be used as data input for the model calculation (data group),
whereas the other half is reserved to validate the model (test group). The reason for splitting
the records into two different groups is that we can not use the same records to calculate the
coefficients of the model and to test its behaviour since, in that case, the real energy consumed
by the experiment and the energy projected will be the same; having a lot of experiments in
the data group implies having less opportunities to check the accuracy of the model and, the
other way round, having less experiments to calculate the model will lead into an uncompleted
model.

The records belonging to each group are selected arbitrary: the records are firstly shuffled and
afterwards splitted in two groups.

The coefficient matrix of the energy model is calculated with the records belonging to the data
group using the PCA methodology explained above. This matrix will be used to project the
energy of each of the registers belonging to the test group.

The validation of the model consists in the comparison of the real energy consumed by the
application with the energy projected by the model; both energy values, the projected and the
consumed one, can be found in the output of the experiment. In order to give this comparison a
quantitative value and so that different models can be compared, the Root Mean Square Error
(RMSE) expression has been used. RMSE is a standard way to measure the error of a model
in predicting quantitative data. Formally it is defined as follows:

RMSE =

√∑n
i=1 (ŷi − yi)2

n
(5.3)

where ŷi represents the real energy consumption values; yi represents the projected energy
consumption values and n is the number of experiments performed.

A normalized percentage can be therefor calculated as follows:

RMSE(%) = 100 ∗

√∑n
i=1 (ŷi−yi)2

n

max(ŷ, y)
(5.4)

5.3.1. Microbenchmark results

In order to check if a certain energy model fits accourately enough the energy values, we will
compare the real energy consumed by the application with the energy projected for the same
run. That means, the value obtained by the multiplication between the energy coefficient matrix
and the events values, as described in the formula 5.2. We repeated the process for each of
the modules and compared the RMSE values obtained.

We firstly tested the SuperMUC-NG compute nodes which are very similar with to the ones of
the CM module. The microbenchmark was run full node (48 threads) at a reference frequency
of 2.3GHz. The results are depicted at figure 56. In the figure the experiments are ordered
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by energy consumption. The black line depicts the energy measured while runing each of the
application belonging to the test group; the red line represents the predicted energy by the
model. The RMSE value for this certain frequency is 2.26% which will be aproximately 85J.

Figure 56.: Energy model for the SuperMUC-NG compute nodes using a reference frequency
of 2.3GHz.

We can see a similar behaviour with the CM nodes. In this case, as in the previous one, the
microbenchmark was run with 48 threads and a reference frequency of 2.3 GHz. The results
can be seen in figure 57. The black line depicts the energy measured while runing each of
the application belonging to the test group; the red line represents the predicted energy by the
model. The RMSE value in this particular case is 1.39% which is aproximately 49J.

Figure 57.: Energy model for the CM nodes using a reference frequency of 2.3GHz.

Regarding the DAM nodes, the microbenchmark was executed in full node with 96 threads at
a reference frequency of 2.3GHz. The results are depicted in figure 58. The black line depicts
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the energy measured while runing each of the application belonging to the test group; the red
line represents the predicted energy by the model. The RMSE error in this case is, for that
particular case, 1.70% which implies a cuadratic error of aproximately 82J.

Figure 58.: Energy model for the DAM nodes. The reference frequency is 2.3GHz.

The last model calculated belongs to the ESB nodes depicted in figure 59. In that case, the
microbenchmark runs were performed at 1.9GHz in full node with 16 threads, which implies a
cuadratic error or aproximately 5J.

Figure 59.: Energy model for the ESB nodes. The reference frequency is 1.9GHz.

In the same way that we calculated the models for the CPUs, we also calculated the energy
model for the GPU accelerators. As a clarification, the models mentioned for the DAM and ESB
nodes exclude GPU energy. We ran the microbenchmark and of the output registers obtained,
we reserved half for the calculation of the coefficient matrix and the other half to check the fit of
the calculated model. In this case, as we saw earlier, the model is very similar. GPUs have a
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completely different frequency range and therefore the adjustment of the reference frequency
selection will be more complex. The result of the GPU power consumption model can be seen
in the figure 60. There the black line depicts the energy measured while runing each of the
application belonging to the test group; the red line represents the predicted energy by the
model.

Figure 60.: Energy model for the GPU accelerators. The reference frequency is 1.38GHz

The behaviour of an application, the value of hardware counters such as cycles, instructions
or flops is highly dependent on the frequency at which that application is executed. For this
reason, before being able to define the frequency at which the energy consumption by a certain
application (in our case microbenchmark) in a certain cluster is optimal, it will be necessary to
know the RMSE when projecting the energy consumed from any frequency of the system to
any other.

For the visualisation of this RMSE distribution per cluster partition, we have prepared two dif-
ferent graphs:

• The first one, a heatmap type plot, represents the RMSE error when projecting the energy
from any frequency to any other frequency available in the cluster. Red cells indicate a
higher error while as the cells change colour towards green, the error decreases. The
diagonal of such a matrix shall always be zero, since the projected and measured energy
shall be the same. For these plots, the X-axis depicts the reference frequencies and the
Y-axis, the frequency to which the projection has to be calculated.

• The second graph represents the average of the errors of projecting the energy according
to the model from any frequency to all available frequencies of the system.

Both plots are related in such a way that the second plot represents the average of the RMSEs
per column of the first plot. This allows us to have a particular and a global vision of the RMSE
distributions in relation with the system frequencies.

As it can be induced from those graphs:
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• Projecting an energy value from frequencies further and further away from the reference
frequency causes the RMSE value to increase. This is completely logical since the model
being applied is a linear model.

• On the other hand, it is also observed that projecting the energy from the turbo frequency
is much worse than from any other frequency. This is because the power is much higher
but does not always time scale with frequency.

This study has been performed for the three available modules on the DEEP-EST prototype
(see figures 61, 62 and 63).

(a) CM Heatmap: RMSE of the model using each
possible frequency as a reference frequency
and projecting to all available frequencies.

(b) CM Errors: Distribution of RMSE values when
projecting the energy from a certain reference

frequency.

Figure 61.: On the CPUs of the CM nodes the best frequency to proyect energies is around
2.2GHz, 2.3GHz
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(a) DAM Heatmap: RMSE of the model using each
possible frequency as a reference frequency
and projecting to all available frequencies.

(b) DAM Errors: Distribution of RMSE values when
projecting the energy from a certain reference

frequency.

Figure 62.: On the CPUs of the DAM nodes the best frequency to proyect energies is located
around 1.8GHz and 1.9GHz

5.3.2. Real applications

In the previous section, the model has been validated with microbench experiments very similar
to those used to create the energy consumption model itself. This is valid as a first approxi-
mation of the accuracy of the model, but does not provide us with reliable information about its
results in real applications.

To validate the energy model of the microbenchmark experiments, the complete set of results
was divided into two groups, of which one was reserved for model computation and the other
was used to check the accuracy of the model. On this occasion, the group for the calculation of
the model must not be recalculated, since we want to check if that group is complete enough to
differ the energy consumption of these real applications. On the other hand, in order to validate
the model against real applications, the hardware counter values obtained during the execution
of the application in question will be used as a test set.

As a real application the NAS Parallel Benchmarks (NPB) were chosen. NPB are a set of
benchmarks targeting performance evaluation of highly parallel supercomputers. NPB consists
of 11 benchmarks of which 3 have been selected for the validation of the models. These 3
benchmarks are:

• “Block Trigiagonal” (NPB-BT, or simply BT)

• “Scalar Pentadiagonal” (NPB-SP, or simply SP)

• “Lower-Upper Symmetric Gauss-Seidel Decomposition” (NPB-LU, or simply LU)

which solve a synthetic system of nonlinear partial differentation equations (PDE) using three
different algorithms involving block tridiagonal, scalar pentadiagonal and symmetric successive
over-relaxation (SSOR) solver kernels, respectively.
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(a) ESB Heatmap: RMSE of the model using each
possible frequency as a reference frequency
and projecting to all available frequencies.

(b) ESB Errors: Distribution of RMSE values when
projecting the energy from a certain reference

frequency.

Figure 63.: On the CPUs of the ESB nodes the best frequency to proyect energies is located
around 1.9GHz and 2.0GHz

To create the set of experiments of the test group, the value of the hardware counters involved
in the model is needed. In the case of the microbenchmark, these values were obtained by
calls to the PAPI library injected into the microbenchmark source code. In the case of real ap-
plications, the administrator, developer or user is not expected to profile the source code of the
application to obtain the desired counter values at the end of the execution but, is delegated to a
system application that monitors the clusters and applications continuously in the background.
At the end of the execution of the application, only one query must be made to this monitor to
obtain the value of the hardware events in question. In our particular case, this system monitor
is the Data Center Data Base (DCDB), from which the values of the counters can be reached
by means of queries. DCDB collects and aggregates all the hardware performance counters
every second. Having longer latencies, i.e. 10 seconds, if an application takes for example
39 seconds, we will be loosing the information of 9 seconds. This 9 seconds difference will in-
crease the difference between the projected energy and the consumed one, increasing therefor
the RMSE value for the test. So, with a latency of 1 second, there is no much information which
could be missed and which could increase the global RMSE error of the models.

The model was tested with the three NPB bencharks commented above each of them on the
three modules of the DEEP-EST prototype. All tests were done in an unique node running
in full mode (one process per core) and with all possible frequencies of the chip as reference
frequency for the model.

In order to make it easier to visually compare the results of the different benchmarks, a graph
has been produced for each cluster. But, since every testbench has a different runtime, in
this case a normalized energy value has been depicted. The normalized energy values corre-
sponds to the power dimension. Each graph shows a comparison of the real energy consumed
by the benchmark in that cluster and the energy projected by the model fed with the values of
the necessary hardware meters. Both, the value of the real energy used and the values of the
hardware counters have been obtained by means of queries from the DCDB monitor.
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The first module in which the model has been validated is CM (see figure 64). In this case, 2.3
GHz has been used as the reference frequency, since this is the optimal reference frequency
according to previous studies. We can also see that, at 2.3GHz both energy measurements
are in accordance with each other. Using this frequency and the RMSE formula (see 5.4), the
error for the test NPB-BT is 5.12% on power, while for the test NPB-SP it is 3.59% on power.
As seen above, the model does not fit well for the turbo frequency . Much of the RMSE error
accumulates at the latter frequency in the plot.

Figure 64.: Comparison of the power used by a node in the CM module while runing the NPB
benchmarks.

Figure 65.: Comparison of the power used by a node in the DAM module while runing the NPB
benchmarks.

As a second example, the model was validated on the DAM module (see figure 65). As ex-
pected from what was learned from the behaviour of the model in the CM module, the model
fails in the calculation of the energy projection at the maximum frequency. Even so, the RMSE
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Figure 66.: Comparison of the power used by a node in the ESB module while runing the NPB
benchmarks.

error for NPB-BT is 3.61% on power, while the RMSE error in the NPB-SP case is 4.42% on
power. In this particular case, the reference frequency used is 2.1GHz.

As a third example, the model was validated on the CPU processors of the ESB module (see
figure 66). As it could be expected from what was learned from the behaviour of the model in
the CM and DAM modules, the model fails much more at higher frequencies. The reference
frequency used in this example is 2.0GHz as it was observed, it could be the optimal one for
the model computation. In this case, using this reference frequency the RMSE error for the
NPB-BT testbench is 7.72% on power and for the NPB-SP experiment is 4.31% on power.

The model calculated was validated also with the NPB-LU benchmark. The NPB-LU bench-
mark is even more compute bound as the NPB-SP or NPB-BT testbenches and it has the
characteristic that also OMP threads are involved in the computation. The results of the model
fit can be show in figure 67. In that case, only the fit of the DAM and ESB models are depicted,
since the behaviour of the CM and DAM processors are really similar.

(a) DAM Partition (b) ESB Partition

Figure 67.: Comparison of the power used by a node in the DAM and ESB cluster partitions
while runing the NPB-LU benchmark.
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Regarding the validation of the GPU model, at the time of writing, the proposed model has not
yet been able to validate the NPB bechmark in an acceptable way. The RMSE error is currently
around 25%. This failure to validate the model may be due to several things:

• That the set of hardware counters (components of the model) is not adequate to repro-
duce the behaviour of the total energy consumption of the application. Of course, the
behaviour of a CPU is different from the behaviour of a GPU and therefore it is possible
that the selected set of counters is not correct. One component that might make sense
for the model would be the use of the GPU as we believe this would very effectively mod-
ulate the power consumption of the GPU. In this case it would be necessary to re-profile
the microbenchmark by including more or different hardware counters and see if after the
PCA analysis these components are relevant or not.

• The microbenchmarks used to generate the model coefficients are not suitable for GPU
application. It could be, that they do not really make an efficient use of the GPU. In this
case it would be necessary to find a testbench or application that is better suited to the
characteristics of the GPUs in use.

5.4. Results

In this chapter on the calculation of energy models, a summary of the state of the art has
been made from the point of view of the previous deliverables. In addition, the studies and
results carried out in this last phase of the project have been presented, in which, in addition
to studying the contribution of the selection of the reference frequency on the accuracy of the
model, the different models have been compared with each other.

Finally, the energy models have been validated in each of the possible modules of the DEEP-
EST project prototypes for different applications such as the NPB. For this purpose, the func-
tionalities of the DCDB monitoring tool, also developed within the framework of this project,
have also been used.

It is observed that the maximum RMSE error in the microbenchmark experiments is less than
2%, 1.5% and 0.5% for the CM, DAM and ESB modules respectively. Applying a similar
methodology applied to the NPB testbenchs, it is observed that the errors are now less than
5.2%, 4.5% and 7.8% on power.

Something that is also observed in all the tests is, that the model error is always larger when
projecting onto the higher node frequencies. This might be due to the fact that:

• The runtime does not scale linearly with frequency. Therefore, as a linear model is being
considered, there will always be a greater error in cases where time no longer scales.
This occurs at the highest frequency of the system, as there are always components
external to the CPU whose access time is independent of the CPU frequency.

• The power consumption of the chip is given by the formula P = V ∗ f2, where P refers to
the power consumption, V means voltage and f is the frequency. So, the power scales
with the squared frequency and therefor, the error predicting the model also increases
with the square increase in frequency.
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It is also worth noting that, in relation to the validation of the models in real applications, the
RMSE error of the NPB-SP test is always lower than the NPB-BT error. This might be due to the
fact that the SP benchmark is more compute bound than the BT experiment. So, the model fit
improves with the compute bound feature of the application; the higher the compute bound ratio
is, the better the energy model fits. This is reasonable since a memory bound application can
not be accelerated by changing the CPU frequency so, the model have much energy variances
with the frequency changes.

To conclude, it has been proven that the energy can be modeled in base of certain performance
counters measured at a reference frequency with a low RMSE value. In out case, this set
of performance counters consists of level two cache misses, level three cache misses, the
vectorization per cycle rate and the number of instructions performed. Of course it depends on
the characteristics and behaviour of the application running on the system.
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6. Summary

This document presents the main contributions and conclusions from the four tasks in WP2.
Tk2.1 has delivered a benchmark suite for application and system evaluation. Nine applications
and eleven synthetic kernels have been integrated into the JUBE benchmarking environment
an executed regularly. We have described in this document the lessons learned and the expe-
rience of these years regarding application integration, experiments configuration, data man-
agement, etc, which is even more valuable than the files composing the benchmark suite itself.
System monitoring has been shown very valuable in order to identify unexpected changes in
the system performance when installing new or updating components. Benchmark monitoring
is targeted to identify changes in the application performance because of new releases, new
library versions or different use cases. The experience has demonstrated this is doable and
very valuable, but also that a more flexible tool would be needed to make it portable to other
environments.

In a similar way, the contribution of Tk2.2 has been not only the evaluation the WP5 contribu-
tions but also the definition of the methodologies to perform such evaluation given the charac-
teristics of a modular system. The lack of standard inputs for these architectures has forced us
to define the methodology for workload generation and the metrics for the workflows evaluation
in modular systems. Using the Cirne model as baseline, our methodology mixes N workloads
into a single modular workload using the MWF proposed in D2.1 to be able to ask for spe-
cific characteristics of our systems such as different modules, components dependencies, etc.
Apart from describing the execution environment in detail, we have introduced a set of specific
metrics for workflow evaluation. Two new evaluations have been done: The comparison be-
tween modular system and three different homogeneous clusters, each one using one of the
module architectures of the DEEP-EST prototype. The results have provided very interesting
conclusions showing the ESB architecture by itself is a very good approach since it accelerates
lots of applications and the fact it is a less expensive solution makes it possible to have more
nodes. Moreover, the modular system is the best design because it includes CPU only nodes
(CM) and applications that don’t take benefit of GPUs can be efficiently executed in the CM.
So, the modular system combines the benefits of the two approaches as expected. Finally,
we have also evaluated the WF-API proposal for dynamic workflow management. This API is
an innovative strategy to coordinate the application and the job scheduler. Results presented,
even they are a worse case for us since we are not introducing any additional runtime for jobs
communicating without our proposal, shows promising results in terms of job overlapping. In
the case with 24% of jobs being part of a workflow, between 8% and 27% of the CPU time has
been able to be overlapped.

In Tk2.3 we contributed with an analysis methodology to evaluate the application’s efficiency
and scalability for homogeneous, hybrid and modular applications. Furthermore, we conducted
analyses on 5 different applications with several interesting configurations. The scales of the
analyses range from few hundreds to few thousand processes, which is still far from the exas-
cale. Therefore, we generated tentative extrapolation models projecting the efficiency trends up
to 1 million cores to anticipate which efficiency factors would become more limiting to the appli-
cation’s scalability. Due to the limited size of the deployed cluster, we were unable to validate
the predictions with real executions at larger scales. Hence, we have studied the traces in de-
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tail to validate the observations and provide ideas on how to improve the applications towards
the exascale. Some of these suggestions, mostly targeted at improving small imbalances and
reducing dependency chains that accumulate and propagate, have been simulated to estimate
their impact on larger scales. We reported potential improvements in the efficiency of the par-
allelization of up to 9 percentage points for GROMACS; up to 15—50 for the different phases of
xPIC; up to 40, 80 and 65 percentage points for Arbor, NEST and their coupling, respectively;
and up to 15 on EC-EARTH.

Tk2.4 has created CPU and GPU energy models for CM, DAM and ESB. These models predict
the power and time of the different modules and devices (CPU and GPU) individually and can
be used for energy optimization. As part of Tk2.4 we created an API to be able to load different
modulfor different architectures. This API was tested in a collaboration with WP5 and was
demonstrated to be usable to load different models and coefficients for different modules. The
CPU energy models showed a very good average error (1,5% and 3%) when evaluated with
samples collected during the creation of the model. The GPU energy model was showing worse
results, in average close to 10%. This document includes a full description of the methodology
used to create the models as well as the final analysis of these models including the average
error when projecting from the different CPU frequencies and the validation using additional
benchmarks. The analysis of the average error when projecting from different frequencies
shows us the error is not constant and depends of the reference.
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A. Benchmarking

This appendix contains technical information about the benchmarking suite integrated within
the DEEP-EST project.

A.1. Benchmark Suite

The git repository of the benchmark suite has the following directory structure.
deep-est benchmarks/

README.md

applications/

bokeh server/

support scripts/

synthetic/

application benchmark driver

benchmark driver

synthetic benchmark driver

The directory applications/ contains the application benchmarks delivered by the collaboration
partners. The directory bokeh server/ contains infrastructure to plot the benchmarking results
by use of a local bokeh server, see reference [1]. The directory support scripts/ contains the
infrastructure needed for regular benchmarking. The directory synthetic/ contains the syn-
thetic benchmarks. The script application benchmark driver enables initiation of all application
benchmarks, the script benchmark driver enables initiation of all benchmarks and the script
synthetic benchmark driver enables initation of all synthetic benchmarks.

With increasing project duration also more and more functionalities needed for the infrastructure
of the benchmark suite were integrated into the support scripts and the visualisation logics.
They became an integral part of the functionality of the benchmark suite. These infrastructure
functionalities needed to be integrated since the complexity of the benchmark suite was growing
immensely because of the amount of benchmarks and partitions on the prototype.

The benchmark driver script can be used as a first general starting point for initialising a bench-
mark. The help can be printed and shows all user options available.

$ ./benchmark_driver -h

Help for benchmark_driver:

This script calls benchmark scripts according to the options set up by the user.

-r ’R’un the benchmarks in ’parallel’ xor ’serial’ batch submission mode.

-p ’P’erform the benchmarks ’mpiLinkTest’, ’ior’, ’h5perf’, ’stream’, ’hpl’,

’hpcg’, ’mdtest’, ’hpcc’, ’mpiLinkTestGPU’, ’hpl4cuda’, ’synthetic’,
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’UoI-piSVM’, ’UoI-HPDBSCAN’, ’UoI-NEXTDBSCAN’, ’UoI-DeepLearning’,

’NMBU-NEST’, ’NMBU-Arbor’, ’NMBU-Elephant’, ’KUL-xPic’, ’KUL-DLMOS’,

’NCSA-GROMACS’, ’CERN-CMSSW’, ’ASTRON-Correlator’,

’ASTRON-Imager’, ’UoI’, ’NMBU’, ’KUL’, ’NCSA’, ’CERN’, ’ASTRON’,

’application’ or ’all’.

-t ’T’ype of reservation can be of the form ’daily’, ’weekly’ xor ’none’.

-o ’O’n ’deepest_cm’, ’deepest_dam’, ’deepest_esb’, ’deepest_cm_esb’,

’deepest_cm_dam’, ’deepest_dam_esb’, ’deepest_cm_dam_esb’ (xor).

-s ’S’teps to perform: ’compile’, ’benchmark’, ’analysis’, ’packtodb’ or

’all’.

This script is calling the driver scripts for the synthetic and the application benchmarks. They
have mostly the same parameter options only with a subset of the performable benchmarks.
These scripts are again calling the benchmark driver scripts of the corresponding benchmarks
having the same options again besides the parameter -p. So, performing a single synthetic or
application benchmark can also be performed by just moving into the directory of this bench-
mark and calling the corresponding driver script.

The parameter -r describes the way how the sbatch scripts are executed. ’parallel’ is leading
to sbatch jobs which are independent from each other and executed in parallel if enough re-
sources are available. The parameter -t describes the reservation used for the execution of this
benchmark. ’daily’ and ’weekly’ are using the corresponding reservations which were allocated
daily and weekly for the sake of running theses benchmarks as independent as possible from
the rest of the users. The parameter ’-o’ defines the module permutation being used for this
benchmark. The parameter -s states which step of the benchmark is going to be performed.
’compile’ just performs the compilation of the benchmarking software. This parameter was in-
troduced since the execution for FPGA software could take hours. ’benchmark’ initiates the
benchmark itself. ’analysis’ triggers the result extraction from the data produced by the bench-
marks. ’packtodb’ initiates the storing of the results into a database to make them visualisable
at a later point.

6.2. Synthetic Benchmarks

The synthetic benchmarks which could be integrated given the resource constraints are stated
in the following file hierarchy.

synthetic/

h5perf/

hpcc/

hpcg/

hpl/

hpl4cuda/

ior/

mdtest/
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deep-est benchmarks/

deep-est benchmarks install/

deep-est benchmarks output/

benchmarkingResults.db

git directory

untouched by benchmark execution

install directory

store all data created while compile step

result directory

store all data created while benchmark and analysis step

this directory is archived daily

benchmarking result database

store all results within this database while packtodb step

this file is archived daily

Figure 68.: Files created by benchmarking steps

mpiLinkTest/

mpiLinkTestCrossPartition/

mpiLinkTestGPU/

stream/

Each directory contains a driver script, JUBE scripts and further software needed for the exe-
cution of a benchmark.

h5perf

The parameter values, which can be chosen, are explained within deliverable 2.1. The potential
parameter values used are given like follows.

The results are given by average write in MB/s, average read in MB/s and runtime in seconds.
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nodes 10
taskspernode 4
api phdf5
nBytes 2G
iterations 1
collective true,false
chunked true,false
interleaved true,false
minimal transfer size 1G
maximal transfer size 1G

Table 20.: Potential Parameter values of the h5perf Benchmarks

hpcc

HPCC by itself again is a small benchmark suite containing several benchmarks.

• HPL: software package that solves a (random) dense linear system in double precision
(64 bits) arithmetic on distributed-memory computers

• DGEMM: measures the floating point rate of execution of double precision real matrix-
matrix multiplication

• stream: Sustainable Memory Bandwidth in High Performance Computers

• PTRANS: exercises the communcations where pairs of processors communicate with
each other simultaneously

• RandomAccess: measures the rate of integer random updates of memory (GUPS)

• FFT: a set of benchmarks to measure communcation characteristics based on the b eff
benchmark which is the effective bandwidth benchmark

nodes 1
taskspernode 8,24

Table 21.: Potential Parameter values of the hpcc Benchmarks

Here we are only using the results from the RandomAccess benchmark which are given by
MPIRandomAccess LCG GUPs, MPIRandomAccess GUPs, StarRandomAccess LCG GUPs,
SingleRandomAccess LCG GUPs, StarRandomAccess GUPs and SingleRandomAccess GUPs.
GUPs is representative for 109 updates per second.

hpcg

This performance benchmark algorithm solves a dirichlet boundary condition problem in 3 di-
mensions with a 27 point stencil. It is designed to define a benchmarking metric which focuses
on other algorithmic workflows compared to the HPL benchmark.
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nodes 1,2,3,4
taskspernode 8,24
nx 256
ny 128
nz 128
seconds 240

Table 22.: Potential Parameter values of the hpcg Benchmarks

The result is given by performance in GFLOP/s and runtime in seconds.

hpl

This benchmark is the Quasistandard for measuring performance of a system. The scalable
algorithm solves a linear system of equations by use of an LU-Decomposition. The output is the
performance of the system for a particular set of input parameters. This set of input parameters
is varied until the maximum performance is yielded.

The result is given by the performance in GFLOP/s.

hpl4cuda

This algorithm, developed by nvidia, expands the hpl benchmark to include the usage of avail-
able GPUs. The amount of work is spread between the CPUs and the GPUs.

The result is given by the performance in GFLOP/s.

ior

The ior benchmark was discussed in deliverable 2.1. The parameters for the benchmarks were
chosen as in table 25.

The results are given by read and write bandwidth in MB/s and by the runtime in seconds.

mdtest

Being an extension of the ior benchmark, mdtest measures the metadata performance of the
file system at hand. The parameters used for this benchmark are given as follows.

The results are given by FileCreation op/s, FileStat op/s, FileRemove op/s, FileRead op/s,
TreeCreation op/s and TreeRemoval op/s. The unit op/s seconds is stating the number of op-
erations per second.
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nodes 1,4,16
taskspernode 8,24
ns 79872,115584,159744,463104
number of nb 1
nbs 192
pmap processing map 0
number of process grids 1
ps 2,4,8,16
qs 4,6,12,24
threshold 16
number of panel fact 1
pfacts 2
number of recursive stopping criterium 1
nbmin 4
number of panels in recursion 1
ndivs 2
number of recursive panel fact 1
rfacts 1
number of broadcast 1
bcasts 1
number of lookahead depth 1
depths 1
swap 2
swapping threshold 64
l in form 0
u in form 0
equilibration 1
memory alignment in double 8
number of additional problem sizes for ptrans 0
values of n 1200 10000 30000
number of additonal blocking sizes for ptrans 0
values of nb 40 9 8 13 13 20 16 32 64

Table 23.: Potential Parameter values of the hpl Benchmarks

mpiLinkTest

The mpiLinkTest measures bandwidth performances when sending data between two tasks
by use of MPI. The parameters were discussed within deliverable 2.1 and take the following
values.

The result is given by the runtime in seconds and the maximal, minimal and average bandwidth
in MB/s.
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nodes 1,2
taskspernode 1
ns 32768
number of nb 1
nbs 512
pmap processing map 0
number of process grids 1
ps 1,2
qs 1
threshold 16
number of panel fact 1
pfacts 0
number of recursive stopping criterium 1
nbmin 2
number of panels in recursion 1
ndivs 2
number of recursive panel fact 1
rfacts 0
number of broadcast 1
bcasts 0
number of lookahead depth 1
depths 1
swap 1
swapping threshold 192
l in form 1
u in form 1
equilibration 1
memory alignment in double 8
number of additional problem sizes for ptrans 0
values of n 1200 10000 30000
number of additonal blocking sizes for ptrans 0
values of nb 40 9 8 13 13 20 16 32 64
cpu cores per gpu 1
cuda dgemm split 0.95
cuda dtrsm split 0.85

Table 24.: Potential Parameter values of the hpl4cuda Benchmarks

mpiLinkTestCrossPartition

This extension to the mpiLinkTest benchmark allows for intermodular communication.

The result is given by the runtime in seconds and the maximal, minimal and average bandwidth.
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nodes 1
taskspernode 2
api POSIX,MPIIO
blockSize 64g
transferSize 8m
segmentCount 1
repetitions 1
verbose 0
fsync 0,1
collective 0,1
memoryPerNode 0%
storeFileOffset 0
taskPerNodeOffset 0
multiFile 0
reorderTasksConstant 1
reorderTasksRandom 0
writeFile 1
readFile 1
filePerProc 0
useO DIRECT 0
fsyncPerWrite 0
fsync 0

Table 25.: Potential Parameter values of the ior Benchmarks

nodes 1
taskspernode 2
testFilesOnly -F
createOnLeafOnly -L
uniqueDir -u
create -C
stat -T
remove -r
items 150,250
read ””,-E
writeBytes ””,”-w 3901”
readBytes ””,”-e 3901”

Table 26.: Potential Parameter values of the mdtest Benchmarks

mpiLinkTestGPU

An extension to the mpiLinkTest benchmark includes the usage of GPU buffers for sending
messages from one GPU to another GPU on another node. This way the communication is
significantly speeded up allowing for a slim acompanying CPU and RAM.
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nodes 1,4,8,16,32
taskspernode 2
AllToAll 0
Warmup 2
Randomized 0
Size 1,16384,4194304
Iterations 1000
Serialized 0,1

Table 27.: Potential Parameter values of the mpiLinkTest Benchmarks

nodes 6
tasks 20
AllToAll 0
Warmup 2
Randomized 0
Size 131072
Iterations 50
Serialized 0

Table 28.: Potential Parameter values of the mpiLinkTestCrossPartition Benchmarks

nodes 2
taskspernode 2
AllToAll 0
Warmup 2
Randomized 0
Size 1,16384,1048576,4194304
Iterations 50
Serialized 0,1
network TCP,Extoll,InfiniBand
node unit CPU,GPU

Table 29.: Potential Parameter values of the mpiLinkTestGPU Benchmarks

The result is given by the runtime in seconds and the maximal, minimal and average bandwidth.

stream

This benchmark measures the performance of the memory at hand. The stream benchmark
allows for measurement of the cache levels.

The results are given by the performance of different operations on data on the memory. These
are defined by add MB/s, copy MB/s, scale MB/s and triad MB/s.
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nodes 1
taskspernode 1
threadspertask 4,8,12,24
o level 3
size 226

ntimes 10
offset 0

Table 30.: Potential Parameter values of the stream Benchmarks

6.3. Application Benchmarks

Further information and more in depth descriptions of the application benchmarks are located
within D1.2. The file hierarchy structure representing the application benchmarks within the
benchmark suite is given by the following.

applications/

ASTRON/

Correlator/

Imager/

CERN/

CMSSW/

KUL/

DLMOS/

xPic/

NCSA/

GROMACS/

NMBU/

Arbor/

Elephant/

NEST/

UoI/

DeepLearning/

HPDBSCAN/

NEXTDBSCAN/

piSVM/

Each directory contains a driver script, JUBE scripts and further software needed for the exe-
cution of a benchmark.

ASTRON/Correlator

The correlation step correlates the station signals, which contain information on amplitude and
phase of the source.

The parameter for variation for the Correlation benchmark is given by NR STATIONS. NR STATIONS
defines the number of telescope pairs being used for the algorithm. All parameters used by this
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benchmark are given by the table 31.

nodes 1
taskspernode 1

NR STATIONS
1,16,32,48,64,80,96,112,128,144,160,176,192,208,224,240,256,272,288,
304,320,336,352,368,384,400,416,432,448,464,480,496,512,528,544,560,
576

Table 31.: Correlator Parameter Permutations

The main result of the benchmarks is defined by the total correlation performance in TFLOP/s.

ASTRON/Imager

There are two parameters being varied for the Imager benchmark. NR CHANNELS is stating
the number of pictures being overlapped. The parameter timesteps defines the number of
pictures being shot after each other. The parameters are given as in table 32.

nodes 1
taskspernode 1
threadspertask 16,96
NR CHANNELS 1,4,8,16
timesteps 3600,7200,14400

Table 32.: Imager Parameter Permutations

The results of this benchmark are given by gridding MVis,degridding MVis,gridding gflops,degridding gflops
and fft gflops. Gridding and degridding are represented by normal and inverse fourier transfor-
mations of the algorithm. MVis is standing for 109 Visibilities.

CERN/CMSSW

For the CMSSW benchmark one parameter permutation was performed.

nodes 1
taskspernode 1
threadspertask 16

Table 33.: Potential Parameter values of the CMSSW Benchmarks

The main result is given by eps which is the number of the events per second which can be
processed during execution.
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KUL/xPic

Main parameters to variate are given by run ntcx, run nblockx, run nppc and job input. The
parameter run ntcx defines the number of cells per species. The parameter permutations are
mainly created by permuting the number of MPI processes job mpiproc and by varying run nctx.
The parameter run nblockx defines the number of blocks per MPI process. The parameter
run nppc defines the number of particles per cell per process.

job mpiproc 1,2,4,8,12,16,24
run ntcx 16384,32768,65536,131072,196608,262144,393216
run nblockx 4,8,16,32,48,128,256,512
run nppc 100,1000
job input test 02.inp,test 03.inp,test 04.inp,test 05.inp,test 06.inp,test 07.inp

Table 34.: Potential Parameter values of the xPic Benchmarks

The benchmarking result is given by the runtime in seconds.

NCSA/GROMACS

Three molecules with different sizes were chosen to be benchmarked. The molecular dynam-
ics simulations can be executed on all partitions. CPUs and the GPUs can perform the sim-
ulations. Throughout the project duration new GROMACS versions were published. These
were integrated into the regular benchmarking procedure. The parameter permutations are
given by a tensor product of the following parameters with some restrictions to valid parameter
permutations.

Molecule Magainin, Bombinin, Ribosome
GROMACS Version 2018.4, 2019.3, 2019.6, 2020.1
# Compute Nodes 1,2,4,8
# MPI Tasks per Node 1,4,8,12,24,48
# Threads per MPI Task 1,2,3,4,6,8,12,24,48

tprfile
magainin.tpr,magainin-2019.tpr,
bombinin.bombinin-2019.tpr,
ribosome.tpr,ribosome-2019.tpr

Table 35.: Potential Parameter values of the GROMACS Benchmarks

See D2.1 , [2], for more details concerning the molecules. Not all potential parameter permuta-
tions are being executed. If a set of parameter permutations makes no sense or if the execution
fails due to incommensurable values, with respect to the system to be simulated, the simulation
is not performed.

The result of a benchmark execution is defined by the performance in nanoseconds simulated
for the molecule per day of simulation time.
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NMBU/NEST

The neural network simulation NEST’s parameter set is defined by the number of MPI tasks,
the number of nodes and the commit id of the NEST git repository. Potential values are given
in the table 36.

commit id 00e0d3c,3236fe9,b84c9ba,37722d5,c2a153b
ntasks 2,4,8,16,32,64,94
tasks per node 2
nodes 1,2,4,8,16,32,47
threads 24

Table 36.: Potential Parameter values of the NEST Benchmarks

The result from this benchmark is the simulation time in seconds.

NMBU/Arbor

Only one set of parameter permutations is used at this point.

OpenMPthreads 24
MPIProcesses 1
NEST Version master@a16232066

Table 37.: Potential Parameter values of the Arbor Benchmarks

The result is given by the runtime of the benchmark.

UoI/HPDBSCAN

The input parameters are given by the number of nodes, the threads per task and the input
datasets. The potential values are give by the following.

nodes 2,8
threadspertask 2,16
dataset bremenSmall.h5.h5,bremen.h5.h5

Table 38.: Potential Parameter values of the HPDBSCAN Benchmarks

The main result is given by the runtime.

UoI/piSVM

This application benchmark uses the same input dataset and parameters throughout the project
for one parameter permutation.

The result is given by the runtime of the benchmark.
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nodes 2
taskspernode 24
train dataset indian processed test.el
dataset indian processed training.el

Table 39.: Potential Parameter values of the piSVM Benchmarks

6.4. Support Scripts

The support scripts evolved with increasing experience and needs of the benchmark suite.
They contain, in summary, the following functionalities.

• logic for updating and checking out repositories

• check the stated user flags and defining defaults for parameters

• cron schedule

• check the status of running jobs

• clean the job queue

• check and installing database software

• pack results to database

• collect system information (environment variables, kernel version, etc.)

• logic for updating/backup of executables

• perform all compilations

• upload of the last execution date of benchmarks

• logic for archiving benchmarking files

The benchmarking results were stored into several sqlite databases. These databases are
used to perform the plotting.

Examples for the files and the type of functionality offered herein is given by the script pack results to db.py.

$ python ./pack_results_to_db.py -h

Use this script as follows and in this parameter order:

pack_results_to_db.py -r resultPath -d databasePath -t tableRootName

-n numberOfResultsToPack -f resultFileName

resultPath : defines the path where the jube benchmarks are performed

and the results can be found which will be integrated

into the database. This should be a string starting with

a /. The result folder is assumed to contain all jube

runs in ascending numeric order.

databasePath : defines the path of the database in which the results
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will be stored. This should be a string starting with a

slash.

tableRootName : defines the root part of the tablename into which the

results will be stored within the database.

numberOfResultsToPack: defines the number of the last results which will be

considered for integrating into the database. This should

be a positive integer or zero. If 0 it will take all

results.

resultFileName : defines the name of the result file to read.

By use of this script the regular benchmarking results collected and packed into an sqlite
database for later use by a bokeh visualisation server.

Another example for the functionalities of the support scripts is given by the script collect sys info.sh.
This script is collecting system information of the current exeuction like environment variables
and the linux kernel version. It serves as a way to check the state of the environment of the ex-
ecution of a benchmark. This could be of special interest if one can identify significant changes
in the performance of a benchmark execution.

6.5. Visualisation

Visualisation of the benchmarking results allows for receiving an overview. The file hierarchy of
the visualisation software is given by the following.

bokeh server/

bokeh driver

clean database.py

description.html

main.py

visualization.py

By use of the script bokeh driver the bokeh server and the visualisation can be performed.

$ ./bokeh\_driver -h

Help for bokeh_driver:

This script performs the necessary steps to open a bokeh visualization server.

Once the server is started you have to follow the steps of the bokeh output to

connect to the server. If you are running the server on a the deep cluster and

you would like to visualize the data in your local browser type:

ssh -N -f -L localhost:5006:localhost:5006 <your_user_name>@deep.fz-juelich.de

and use afterwards the link stated by bokeh on your local browser.

To release the connection on your local machine type:
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lsof -ti:5006 | xargs kill -9

Please state all of the following parameters when running this script:

-b ’B’enchmark to visualize.

-d ’D’atabase path.

The relevant results are plotted on the vertical axis. The timeline is plotted on the horizontal
axis. The user of the visualisation tool can state possible parameter combinations plotting
different temporal benchmarking result evolutions. The tool used here is a bokeh server.

The server can be set up on the login node. After connecting with the login node by use of ssh
the visualisation can be performed on the local webbrowser.

Figure 69.: Sample Webbrowser Visualisation

The server is connecting to one of the databases storing the regular benchmarking results.
There is a database for every partition permutation used throughout the measurement.
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7. Modular Workload Format

7.1. Modular Workload Format fields

Modular fields

1. Modular Job Id – An ID common to all the components of the modular job.

2. Total Components – Number of components in the modular job (minimum one)

3. Modular Job Name – Text

4. Submit Modular Job Time – in seconds. Submission time for the first set of components

5. Wait Modular Job Time – in seconds. The difference between the job’s submit time and
the time at which it actually began to run (some of its components). It is not needed for
evaluation, only for comparison between results.

6. Modular Requested Time – in seconds. Limit for the modular job. -1 if this value is not
provided. In that case, the partition limit will be used

7. Num Components At Submit Time – Integer. This field is the number of components
submitted together at modular submit time

Job Component fields

8. Component Job Id: Modular Job Id+ Offset – This JOB ID is unique. It goes from
Modular Job Id to Modular Job Id+(NumComponents-1).

9. Component Job Name – text

10. Wait Component Job Time – in seconds. The difference between the job’s submit time
and the time at which it actually began to run. It is not needed for evaluation, only for
comparison between results

11. Component Run Time – in seconds. Integral number of seconds.

12. Status – 0 means COMPLETED with success. Values different from 0 will represent
errors.

Job Component resource requirements description

The job scheduler receives job component requirements, applies the job scheduler and re-
source selection policy, and reports a set of resources allocated. Resource allocation is re-
ported for comparison but it is not part of the input. One component will run in a single module.
If one job needs more than one module, one component per module will be specified.

HW resources
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13. Executable Number – a natural number, between one and the number of different appli-
cations appearing in the workload. in some logs, this might represent a script file used to
run jobs rather than the executable directly; this should be noted in a header comment

14. Partition Name – Text with the partition name; NA, if no specific partition is requested

15. Nodes – an integer. Number of nodes requested

16. Processes Per Node – an integer

17. Threads Per Process – an integer

18. Memory Per Node – In KB

19. Freq – frequency in kilohertz, min and max

20. Reference Power – Input average power in Watts. Input by user or a power model.

21. NAM – in KB. NAM (Network Attached Storage) is a global resource and users will be
able to ask for it

22. Local Storage – in MB

23. Network – list o network requirements. More than one can be added with AND & or OR |

24. Constraint – A set of keywords, potentially with & or | special characters. These con-
straints must be specified in the different modules to simplify resource selection. For
instance, based on sbatch manual [?] intel&gpu, intel|amd

25. Hint – at least cpu intensive and memory intensive. SLURM supports hints for resource
allocation. These hints can be also used, and extended, for energy–performance models

SW resources

Licenses – Text. More than one can be added with AND & or OR |

Component resource allocation description

One component will run in a single Module. If one job needs more than one module, one
component per module will be specified.

HW resources

26. Component Module Id – 0 - Number of Modules (One component will run in a single
module). Module ID where this component is executed

27. Partition Name – Text with the partition name selected

28. Nodes – Number of allocated nodes

29. Processes Per Node – an integer

30. Threads Per Process – an integer

31. Memory Per Node – In KB (0 if not requested)

32. Freq – frequency in kilohertz

33. Average Power – measured average power in Watts
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34. NAM – in KB (0 if not requested)

35. Local Storage – in MB (0 if not requested)

36. Network – keywords describing resources allocated or NA if not requested

SW resources

37. Licenses – licenses allocated or NA if not requested

Dependencies

38. After Component Job Id – This component must start after job ID. -1 if there is no de-
pendency

39. Dependency Type – NA/DYNAMIC/AFTER/AFTERANY/AFTEROK/AFTERNOTOK//SIN-
GLE. This is the list of types of dependencies supported by SLURM. DYNAMIC is an
additional type defined here.

• NA means there is not dependency

• DYNAMIC means the component must be started N seconds after
AFTER COMPONENT JOB ID. The number of seconds is defined in the next field,
and in that case it is relative to the dependent job start time.

• AFTEROK/AFTERNOTOK – This job can begin execution after the specified jobs
have successfully/not successfully executed

• SINGLE is a special case defined by SLURM. This job can begin execution after any
previously launched jobs sharing the same job name and user have terminated

40. Think Component Time – in seconds. When DYNAMIC is selected, it corresponds to
the requested delay from the start of the first component to the start of this component.
Otherwise it is related to the job finalization overhead

Component-level events

41. API call time – in seconds. It models events called by the job that impact the job schedul-
ing. It is used to model the API call for the workflow policy, but it can be extended to a
list of comma-separated key:value elements, with key represent the event type (ID or key-
word), and value the number of seconds passed from the start of the job until the event.
E.g.: ”WF API:650,extend job:850”.
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List of Acronyms and Abbreviations

C
CM Cluster Module: with its Cluster Nodes (CN) containing high-end

general-purpose processors and a relatively large amount of mem-
ory per core

D

DAM Data Analytics Module: with nodes (DN) based on general-
purpose processors, a huge amount of (non-volatile) memory per
core, and support for the specific requirements of data-intensive
applications

DB Data Base
DCDB Data Centre Data Base (a tool developed in DEEP)
DEEP-EST DEEP - Extreme Scale Technologies

E

ESB Extreme Scale Booster: with highly energy-efficient many-core
processors as Booster Nodes (BN), but a reduced amount of mem-
ory per core at high bandwidth

FPGA Field-Programmable Gate Array, Integrated circuit to be configured
by the customer or designer after manufacturing

H

HCA Host Channel Adapter
HPC High Performance Computing
IFS Integrated Forecasting System

M

MWF Modular Workload Format
MPI Message Passing Interface, API specification typically used in par-

allel programs that allows processes to communicate with one an-
other by sending and receiving messages

MPMD Multiple Program Multiple Data
MSA Modular Supercomputer Architecture
NAM Network Attached Memory
NEMO Nucleus for European Modelling of the Ocean
NPB NAS Parallel Benchmarks
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NPB-BT NAS Parallel Benchmarks - Block Trigiagonal
NPB-LU NAS Parallel Benchmarks - Lower-Upper Symmetric Gauss-Seidel

Decomposition
NPB-SP NAS Parallel Benchmarks - Scalar Pentadiagonal

P

PCA Principal Component Analysis
PAPI Performance Application Programming Interface
RMSE Root Mean Square Error

S

SLURM Job scheduler that will be used and extended in the DEEP-EST
prototype

SPMD Single Program Multiple Data
UPI Ultra Path Interconnect
XIOS XML Input/Output Server
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