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Executive Summary

The applications from work package 1 (WP1, Co-Design Applications) provide use cases and
requirements as co-design input to the other work packages. They demonstrate the capabilities of the
DEEP-SEA software stack and evaluate its performance and usability for a wide range of scientific
applications from molecular dynamics to space weather. The results feed back into the development
cycle of the project in close collaboration with all work packages. To cover as many aspects of the
software stack as possible WP1 also maintains a set of additional benchmarks.

To initiate the interaction between the work packages and obtain relevant input from the application,
we organised a weekly seminar. Each week an application and an API or program model were
introduced and discussed. The seminars have been attended typically by more than 50 people and
have helped to clarify the kind of input needed.

This deliverable summarizes the requirements of the different applications.
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1 Introduction

The DEEP-SEA project is developing the software stack for European exascale computers based on
the Modular System Architecture (MSA) developed in DEEP-EST. A core component of the project
is the co-design process with application from 7 highly relevant application areas. This deliverable
provides the initial co-design input from the applications. The weekly DEEP-SEA seminar series has
provided a forum to introduce and discuss the applications and a selection of Application Programming
Interfaces (APIs) and programming models. The seminars have been very well attended and will
continue.

The following chapters introduce the applications and their workflow. Each application presents
the parallelization scheme used and presents its requirement in terms of interface, libraries, and
hardware.

DEEP-SEA - 955606 9 31.07.2021
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2 Space Weather

2.1 Introduction

KU Leuven is an autonomous university. It was founded in 1425. KU Leuven is a research-intensive,
internationally oriented university that carries out both fundamental and applied research. It is strongly
inter- and multidisciplinary in focus and strives for international excellence. To this end, KU Leuven
works together actively with its research partners at home and abroad.

The team from KU Leuven (KULeuven) is affiliated to the Centre for mathematical Plasma Astrophysics
(CmPA), founded 24 years ago as a division of the Mathematics Department of KU Leuven. The team
is also associated with the Leuven.AI Institute and the Leuven Centre for Aero & Space Science,
Technology and Applications (LASA). The CmPA includes four permanent staff members, two part-
time affiliated staff member and around 30 research fellows, postdocs and PhD students. The CmPA
employs applied mathematics, high performance computing and fundamental plasma physics models.
The CmPA is also involved in multiple space missions (e.g., Proba2, IRIS, MMS, Parker Solar Probe,
BepiColombo and Solar Orbiter). The CmPA has expertise in areas of space and plasma physics
with a strong experience in supporting observational and experimental research. Examples are the
support of fusion energy experiments and the strong participation in the ESA Space Situational
Awareness (SSA) initiative. One of the three core components of the SSA program is the Space
Weather (SWE) service dedicated to the study, surveillance and forecasting of the space environment
from the Sun to the Earth.

Space weather studies the physics of the energetic activity of the Sun, the propagation of solar
plasma through the solar system, its interaction with the plasma environment of the planets and the
effects on the Earth’s atmosphere, on human life and technology. Space weather has a high societal
relevance for its impact on multiple industries (satellite operations, telecommunications, geolocation,
electric distribution, space exploration, among others). During the DEEP projects, KU Leuven has
developed the particle-in-cell code xPic, which studies the effects of solar plasma on the environment
of different planets in the solar system. A suite of Data Analysis (DA) and Machine Learning (ML)
techniques are employed around xPic to set up the initial conditions of the code and its boundary
conditions and to analyse the generated data. This space weather workflow uses already the MSA
and runs on the DEEP-EST prototype hosted by J?lich Supercomputing Centre.

The code xPic has two solvers: a field solver for the computation of electromagnetic fields (which runs
on the Booster module), and a particle solver for the transport of plasma ions and electrons (which
runs on the Cluster module). Terabytes of data are produced in the particle solver. The code AIDApy
creates initial conditions for the simulation (using Deep Learning or Self-Organising Maps techniques)
and analyses the velocity distribution data of the particles (using Gaussian Mixture Models).

2.2 xPic: plasma physics HPC code

The code xPic is based on the Particle-in-Cell (PIC) algorithm. The physical phenomenon that
xPic studies is the dynamics and transport of space plasmas. Plasma is the fourth state of matter:

DEEP-SEA - 955606 10 31.07.2021
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when very high pressures or temperatures are applied to matter, the electrons are peeled from the
ions. These two types of particles (ions and electrons) carry opposite electric charges (positive and
negative). The movement of each individual particle is then governed by electromagnetic forces.
At the same time, the movement of the particles causes changes in the total electric charge of the
environment and can produce currents that modify in turn the electric and magnetic fields. In a
plasma the charged particles and the electromagnetic fields are tightly coupled.

Figure 1 shows the general structure of a PIC code. The algorithm is divided in four main phases: a)
a field solver calculates the evolution of Maxwell’s equations of electromagnetism using a numerical
solver; b) a particle solver transports billions (or trillions) of individual and independent particles of
different electric charge (ions and electrons), c) the movement of the particles depends on the forces
interpolated from the field solver to the particle solver, d) and finally statistical information is gathered
from the particles by integration of different moments of the velocity distribution function.

Figure 1: Four phases of the PIC algorithm used in the code xPic (KU Leuven).

2.2.1 Programming languages

The code xPic has been programmed in C++ mainly using the standard C++14. Some pre- and
post-processing tools have been implemented in Python.

2.2.2 Libraries and other dependencies

The field solver of xPic uses PETSc. Files are read and saved in parallel using HDF5.

2.2.3 Parallelization

The code xPic uses three levels of parallelism: inter-node message passing using MPI, intra-node
multi-threading using OpenMP and thread vectorization using OpenMP. This design was proposed
during the DEEP-ER project in order to have optimal performance on Intel Xeon Phi accelerators.
However, in the DEEP-EST project we had to restructure the code in order to use GPU accelerators
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instead. Testing showed better performance when one thread per MPI process was used, and multiple
MPI processes were requested for each node. Offloading to the GPUs has been implemented using
OpenMP 5.0. Data transfers between GPUs is performed using GPU-aware MPI communications.

Figure 2 shows the dominant MPI communication pattern in xPic for a 2D example running in: 2
nodes x 24 cores/node = 48 cores. In the field and the particle solver the computational domain is
divided in subdomains that are processed independently by each MPI process. In the field solver,
a linear iterative method is used to minimize the residual of a linear system. This iterative method
requires to gather the residual error at each iteration performing a global MPI reduction.

However, the dominant pattern is imposed by the particle solver. Particles that exit the MPI subdomain
are transferred to the neighbouring MPI process. In the case used to extract Figure 2 a two-
dimensional problem was used. There are four dominant diagonals, corresponding to the right, left,
top and bottom MPI neighbours of each MPI process.

Figure 2: Dominant MPI communication patterns in xPic. Figure extracted with Intel APS. (KU
Leuven).

Accelerators

The code xPic has been adapted to use GPUs. All particle computations can take place in the GPU
on which the particle resides. We currently allocate all particle memory in the GPU itself, avoiding
any time of transfer to the corresponding host.

To test the performance of the GPU section of the code, we deactivated all the different parts of the
code, excep the particle mover. Figure 3 shows the weak scaling obtained when only the particle

DEEP-SEA - 955606 12 31.07.2021
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mover is used (no field resolution, no particle moments gathering, no field interpolation). This
test has been used to verify that the GPU offloading using OpenMP 5.0 is producing acceptable
performance.

Figure 3: Weak scaling of the particle solver of xPic using the GPUs of the DEEP-EST Booster. (KU
Leuven).

We are aware that there are still some serial sections in the code that can hinder the scalability of this
section of the code. We will be working on the optimization of this particular section.

2.2.4 Typical use case

On most cases we perform simulations of 2D plasma setups, using a resolution of around 1024 x
1024 cells, and 32 particles per cell. For the tests presented in the sections above, we have set a 2D
case with 512 x 768 cells and 1024 particles per cell. This is a problem size that is large enough to
perform tests in a few computational nodes. Ten (10) iterations of this case are executed in around
four (4) minutes, using a total of 48 cores.

During this project we will set up a few other tests of shorter duration with the goal to stress different
phases of the code and find the best compromise between mesh size and number of particles.

2.2.5 Target use case

Our goal is to perform a full 3D simulation of the interaction of the solar wind with a planetary
magnetosphere. This problem requires at least the following configuration: 1024 x 1024 x 2048 cells,
with 2048 particle per cell. The simulation will need to run for at least 100000 iterations. This problem
is 4 orders of magnitude larger than the tests used in the previous sections. Such problem would be
a perfect candidate for an exascale machine and would produce significant scientific results.

DEEP-SEA - 955606 13 31.07.2021
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2.2.6 Application requirements

Scaling

Our goal is to have at the same time a good weak scaling of the code and a very high value of the
number of particles computed (also called as particles pushed) per second. The later is used as
point of comparison with other existing PIC codes, while the former is needed in order to perform
higher resolution and more detailed simulations that reproduce the real physics.

Compute

Figure 4 shows a roofline analysis of the code xPic using the case described in the sections above.
This plot shows that many functions are approaching the optimal corner of the graph. However, this
test was run on a CPU-only cluster, and the version of the code does not include detailed vectorization
routines. When the code is running in a CPU machine the critical sections of the code needs explicit
vectorization to achieve better performance.
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Figure 4: Roofline analysis of the code xPic running with the basic configuration, without optimizations,
using the monolithic mode on the DEEP-EST CPU Cluster Module.

We require good compilers that can produce the best optimization calls and that can give hints to
the developers about the sections that can be further improved. In particular we also require tools to
profile and debug GPU code offloaded with OpenMP.
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Memory

We used Intel APS to extract the memory footprint of our test. It shows that there is a peak use
of 50 GiB per node and 2.1 GiB per MPI rank. The memory footprint is directly correlated with the
number of particles in the simulation. This value can thus be changed to accommodate any given
architecture. The PIC algorithm works better when the maximum possible number of particles are
included in the simulation.

The movement of the particles uses a very simple set of operations. The particle mover thus benefits
from a very high bandwidth memory to ingest and process as many particles as possible at the same
time.

IO

Files containing information about the electromagnetic fields are saved often in order to perform
data analysis. Each one of the files has a size of only a few megabytes. On the other hand, the file
containing particle information can be extremely large. We have performed simulations that produce
files up to 1 TiB large.

All files are be written in parallel using two possible libraries: HDF4 and SIONlib.

Malleability and resilience

The application can run in two different modes: a) in the monolithic mode the code runs as defined in
the previous sections, using an iterative cycle between the field solver and the particle solver, b) in
the modular mode the code is divided in Cluster and Booster sections that run in different modules
of the MSA. Figure 5 shows the sequence of steps in the main loop of the code for the monolithic and
the modular modes.

The code can run fully on CPUs, and the particle solver has the additional option to use GPU
offloading. The running modes and the offloading options allows to perform simulations in different
architectures using different setups.

In case of an unexpected crash, the application uses SCR for restart. SCR uses SIONlib as a
back-end keeping in the local storage the necessary data to restart a failed simulation.

2.3 AIDApy: space data analytics python package

AIDApy is the main code developed by the Horizon 2020 project AIDA (Artificial Intelligence and Data
Analysis, Grant ID: 776262). The goal of this python package is to bring together three critical aspects
in the study of heliophysical data: computer simulations of space plasmas, data from space missions,
and machine learning algorithms. The goal of the package is to improve our scientific knowledge of
the plasmas in the Solar Systems using AI and ML on simulations and observations.

DEEP-SEA - 955606 15 31.07.2021
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Figure 5: Left: sequence of steps of the main loop of the code xPic in the monolithic mode. Right:
same sequence in the modular mode where the steps have been split in the Cluster (CM)
and Booster (ESB) modules, and data transfers between the two modules have been added.

The package AIDApy is then composed of a multitude of python modules with different functionalities.
For the DEEP-SEA project we will use three particular utilities of AIDApy: a) the data client that
downloads data from multiple missions, b) the unsupervised Self-Organizing Map (SOM) method for
the classification of spacecraft data, and c) the Gaussian Mixture Model (GMM) for the identification
and analysis of particle distributions generated by the code xPic.

We are expecting to use the AIDApy package in two different ways: a) analysis of solar wind
information to forecast the plasma conditions to inject in xPic simulations, and b) the automatic
classification and analysis of particle distributions generated by the particle solver of xPic.

Figure 6: Internal structure of the AIDApy package (KU Leuven).

DEEP-SEA - 955606 16 31.07.2021
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Figure 6 shows the internal organization of the AIDApy package. This is a package build on top of
already existing python packages, like HelioPy, SunPy, PyWavelets, etc. The goal of this software
is not to re-write existing software but to coordinate their use in a central package that allows
interoperability.

From AIDApy, the Data Engine and the ML Engine will be used in the DEEP-SEA project. We use the
former to download spacecraft data for analysis, and the later to perform the Self-Organizing Map
and the Gaussian Mixture Model classifications.

2.3.1 Programming languages

The package has been entirely developed using Python 3.

2.3.2 Libraries and other dependencies

There is a large number of dependencies of this package, but all of them are included in the
requirements file and the setup script. However, there are a few packages that require special care in
the installation in the MSA. These are all the packages related to the machine learning framework
and to the handling of parallelism. In the case of AIDApy we rely in particular on PyTorch, scikit-learn,
mpi4py and Horovod.

2.3.3 Parallelization

The SOM has not been parallelized yet. However it uses an automatic optimizer to select the model
hyper-parameters. This optimization can be performed in parallel, testing different parameters at the
same time. A fully parallel version of the SOM algorithm exists and we will explore the possibility of
deploying it in our code.

The GMM algorithm has been parallelized in AIDApy. However this is an embarrassingly parallel
algorithm: each MPI process calculates the GMM of the particles in a subdomain of the computational
domain. There is no requirement for data transfers among the MPI processes. Only one gathering
of data is performed at the end of the processing to create the output results. Currently this data
gathering step is extremely inefficient: all processors transfer their data to a single master processor,
which then performs the IO. In DEEP-SEA we will update the IO routines to avoid this bottleneck.

Other algorithms based on the PyTorch framework use the routines implemented by the developers
for GPU offloading and parallelization.

DEEP-SEA - 955606 17 31.07.2021
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Accelerators

Accelerators are used by PyTorch in some of the algorithms implemented in AIDApy. However, the
SOM and the GMM have not been implemented for use in the GPUs. We will explore the possibility of
implementing the SOM on GPUs. However, we expect that accelerators will play a much interesting
role on the execution of large neural network models with PyTorch.

We are currently developing new algorithms that might be used for the analysis of solar images and
particle data. These models make extensive use of PyTorch and we hope that we will be able to
test them during the DEEP-SEA project. Even if our current goal is to use the SOM and the GMM
algorithms, the work of ML/AI is rapidly changing and we will keep updating our ML tools.

2.3.4 Typical use case

Current simulations of our PIC codes produce particle files of around 50 GiB. On the test cases used
during the DEEP-EST project we used 2 nodes of the DEEP-EST Cluster (2 Intel Xeon ’Skylake’
Gold 6146 processors per node, with 12 cores per processor) to analyze such data in a few minutes.
This type of use case is perfect for debugging and testing of the DEEP-SEA systems.

2.3.5 Target use case

We are planning to perform simulations that produce more than 1 TiB of data. This data will not be
saved to disk but will be transferred directly to the Data Analytics Module of the MSA where the GMM
code will perform the analysis in parallel on each of the subdomains of the simulation.

2.3.6 Application requirements

Scaling

The two different ML models that we are testing, the SOM and the GMM, have different performance
metrics. We would like to verify the strong scaling of the SOM algorithm, because the size of the
problem (the amount of data) is in general known and constant. The goal would be to analyse large
amounts of data in a much shorter time using the MSA. On the other hand, the GMM algorithm will
be able to demonstrate weak scaling, following the weak scaling targeted by the xPic application.
In principle this scaling should be straightforward, as there is no communication or synchronization
among processors until the final step of the code.
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Compute

The SOM and the GMM models have been coded using routines that rely heavily on the CPUs. We
expect to make use of CPU nodes for these applications until GPU versions will be available. These
models depend on single thread performance. On the other hand we will test the use of advanced
neural networks with PyTorch, which allows to perform fast calculations using GPUs.

Memory

The SOM and the GMM models are applied mainly to data that does not require large amounts of
memory to store. However, other applications using neural networks, images of the Sun, and 6D
satellite data, might require larger and faster memory, as the one provided by the current generation
of GPUs.

Let us use the example of the study of images of solar active regions: in this application a large
catalog of images of the Sun is used to train a neural network autoencoder. Each image is on average
of size 512 x 512. These scientific images can contain up to 10 different channels. Each image is
then a matrix of 512 x 512 x 10. We have a catalog of multiple thousands of images. In general the
training of such systems is performed using mini-batches in order to fit in memory the least amount of
images for the training. These batches have in general a size of around 128 images. This means that
each batch of images, occupying a total of 2.68 GiB, has to enter and exit the system memory as fast
as possible, so the multiple training iterations of the neural network can be calculated.

IO

For data IO the main algorithms SOM and GMM do not require special attention, unless the techniques
are applied to much larger and higher-dimensional data sets. In the current use case scenarios we
are not expecting to stress the IO system with our algorithms.

This can change for applications where images or 6D data will be used. In such context the reading
time of the data used during the training of the ML techniques might be a bottleneck and might require
the use of specialized memory. In the use case explained in section 2.3.6, using neural network
autoencoders to study the Sun, we use a very large catalog of images that can occupy multiple TiB of
disk space. The data contained in these catalogs needs to be loaded from disk into memory as fast
as possible. This can require the implementation of multiple levels of data handling.

Malleability and resilience

The code AIDApy is currently not very malleable. In its current state it relies heavily on CPU
architectures. GPU versions of the models are slowly emerging but is more possible that malleable
applications will emerge from the complementary applications that use neural networks. The PyTorch
framework can be launched both in CPU and GPU architectures, using NVIDIA or AMD hardware.
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3 The IFS weather forecasting software

3.1 Introduction

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an international organi-
sation supported by 34 states: 23 members (Austria, Belgium, Croatia, Denmark, Estonia, Finland,
France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal,
Serbia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom) and 11 co-operating
members (Bulgaria, Czech Republic, Hungary, Israel, Latvia, Lithuania, Montenegro, Morocco, North
Macedonia, Romania and Slovakia). ECMWF’s principal objectives are the preparation, on a regular
basis, of medium-range and long-range weather forecasts for distribution to the meteorological
services of the member states; scientific and technical research directed to the improvement of these
forecasts; the collection and storage of appropriate meteorological data.

The Integrated Forecasting System (IFS) is the weather forecasting suite jointly developed by
ECMWF and Météo-France. The suite is currently available to the National Meteorological Services
of its member states, and research collaborations are pursued with a range of European research
institutions, both via participation in EU framework projects and via specific projects with individual
institutions (e.g. ESA, EUMETSAT).

The IFS software has been developed for over 30 years and has been run on various hardware
architectures, such as shared and distributed memory machines, vector and scalar multi-core
processors.

It is run operationally at ECMWF, currently on a Cray XC40 system. Products generated and
disseminated to member states include medium-range forecasts updated twice-daily, and longer-
range monthly and seasonal forecasts updated at a lower frequency.

3.2 The IFS

Coupled global forecasts carried out with the IFS suite consist of 3 main components, namely the
atmosphere, covered by the IFS itself, the ocean, represented with NEMO, ("Nucleus for European
Modelling of the Ocean"), and the ocean-atmosphere interface, covered by WAM, the ECMWF WAve
Model. Dependencies between the three components are illustrated in Figure 7.

The IFS dynamical core is based on a spectral semi-Lagrangian algorithm with semi-implicit time
stepping. The spectral transform method involves discrete spherical harmonics transformations
between physical (grid-point) space and spectral (spherical-harmonics) space. Figure 8 illustrates
the operations carried out during a time step of the atmospheric model, and their implementation in
either grid-point or spectral space.

Spectral transformation capabilities are provided by an internal library. Grid-point space computations
include in particular the physical parameterizations that contribute tendencies from subgrid-scale
processes.
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Figure 7: ECMWF Two time-step view of coupling sequence and exchange of physical quantities
between the atmospheric, ocean wave and ocean models

Figure 8: Schematic of a time step of the atmospheric model
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3.2.1 Programming languages

The IFS is a large software package, written mostly in Fortran (90-2008), but also including some C.
Some ECMWF dependencies are written in C++.

It is a large code base, containing more than 3 million lines of Fortran, distributed in over 7,000 source
files.

3.2.2 Libraries and other dependencies

The IFS stack has a moderate list of third-party software requirements. Software requirements are as
follows:

• Compiler suite with support for F2008, C, C++11, OpenMP.

• MPI-3

• NetCDF 4

• HDF5

• BLAS / MKL

• Python3

3.2.3 Parallelization

The code is distributed both in physical space and spectral space thanks to MPI. A combination of
point-to-point and global communications are used, and buffered or not, blocking or non-blocking
communication modes can be chosen at runtime.

Shared-memory parallelism is exposed at a very coarse granularity with OpenMP, and atmospheric
quantities are stored in cache-friendly blocks allowing efficient multi-core usage, and thereby reducing
the maximum number of MPI tasks required to fill a machine.

A critical communication pattern in the IFS is found in the data transpositions, required to go from
gridpoint space to spectral space, and back again. They are implemented via MPI alltoallv calls,
which constitute an intrinsic limit to scaling.
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Accelerators

The IFS is undergoing considerable effort in order to target x86 architecture alternatives.

As part of this effort, the spectral transforms library has been ported to NVIDIA GPUs with a combi-
nation of OpenACC directives and CUDA library calls for linear algebra (CUBLAS) and fast Fourier
transforms (CUFFT). An OpenMP-offload port of the transforms will be undertaken independently
from, but during the course of, the DEEP-SEA project.

In a similar fashion, an OpenACC port of the radiation component of the IFS is currently being
undertaken, and should become usable within the first year of the project.

The physical parametrizations of the IFS, which represent a significant fraction of the overall cost
of a timestep, are not ideally suited to a one-off GPU port, as was done for the spectral transforms.
This comes from the number of lines of code involved, the number of scientists involved, and the
frequency at which individual parametrizations are modified.

In light of this, a different avenue is being pursued, with the goal of being able to generate tailored
architecture-specific implementations of the parameterizations, at compile time. This approach relies
on compiler-like source-to-source tooling being developed at ECMWF, which allows deep analysis of
the existing code, and implementation of transformation recipes, such as array and loop order flipping,
acceleration directive insertion, and more.

3.2.4 Typical use case

The typical use case for the IFS in DEEP-SEA will be a coupled forecast with a TCo639L137
atmospheric grid, corresponding to an average horizontal grid spacing of 20km and 137 vertical
levels. This is large enough to offer good scaling properties up to 𝒪(100) nodes, yet can fit in the
memory of 12 DEEP-EST CPU nodes.

3.2.5 Target use case

If resources become available to do so during the course of the DEEP-SEA project, our exascale-class
test case would be a coupled forecast on a TCO7999 grid. This would correspond to an average
horizontal grid spacing of 1.4km, and would require of the order of 300 TB of RAM.

3.2.6 Application requirements

Scaling

Thanks to the combination of numerical accuracy and stability demonstrated by the semi-implicit
semi-Lagrangian spectral dynamical core, the IFS serves as a reference in terms of global forecasting
efficiency. Scaling studies have been performed on a number of large GPU-enabled machines. As an
illustration, Figure 9 shows scaling plots established on Titan, Summit, and Piz Daint, at very high
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spatial resolutions of 5 km and 1.4 km, or 2 times and 6 times the current ECMWF operational HRES
forecast resolution.
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Figure 9: Left: IFS model scaling runs on Cray XK7 Titan at 5 km horizontal resolution (TCo1999L137)
comparing baseline (MPI) and Fortran2008 co-arrays (coarrays) implementations
Right: Speed-up on Summit and on Piz Daint for the 1.4 km, 62-vertical level (TCo7999)
hydrostatic (H) and non-hydrostatic (NH) IFS

As mentioned in Section 3.2.3, the principal factor limiting the scaling properties of the IFS is the global
communications required in the spectral transforms. Figure 10 illustrates strong scaling characteristics
of the transforms, established on the Summit machine consisting of IBM Power9 CPUs and NVIDIA
Volta GPUs. The GPU results were obtained with the GPU port based on OpenACC directives,
and CudaDGEMM and CudaFFT library calls. Despite the influence of the global communication,
performance continues to increase up to nearly 2000 CPU nodes, and for the GPU version, 11520
GPUs. This underlines the dependency on having a high-bandwidth, low-latency interconnect.
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Figure 10: Scaling of IFS spectral transform on Summit using a hybrid OpenMP/OpenACC/MPI
configuration, GPUdirect for MPI_alltoallv and CudaDGEMM/FFT libraries
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Compute

Despite efforts to make IFS run efficiently on accelerators, as mentioned in Section 3.2.3, many
optimizations explicitly aimed at execution on x86 architectures are present in the source. This
includes data structures arranged in cache-optimized block layouts and vectorization-friendly loop
orders. Various components of the IFS exhibit different performance characteristics. Although
communication latency in the spectral transforms determines the strong scaling limit, before that
there is no single component responsible for the majority of runtime.

Memory

The typical use case should be able to run on a minimum of 12 DEEP-EST CPU nodes, while the
exascale-class problem would require 𝒪(300) TB of RAM.

IO

Application IO is performed by the ECMWF ECCODES library, in (compressed) grib format. To reduce
the impact of IO latency, dedicated MPI ranks, either co-located with compute ranks or on separate
nodes, are used to aggregate distributed field data before IO processing. Total size of input files for
our typical use case on a TCo639 grid is about 8 GB and output is in the order of 25 GB per simulated
day. For the target use case on a TCo7999 grid this increases to more than 3 TB per simulated day.

Malleability and resilience

Although some GPU offload capabilities are already available in the IFS, the software is currently not
able to adjust to available resources at runtime. The IFS is able to write (bespoke) checkpoint files at
a user-configurable frequency. This gives the application a degree of fault mitigation sufficient for
operational requirements, which mandate a relatively short overall runtime and justify only limited
resiliency overhead compared to re-running a simulation.
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4 Seismic imaging

4.1 Introduction

Seismic depth migration algorithms calculate images of the Earth’s subsurface from the measured
and pre-processed seismic reflection data. These images deliver important pieces of information
to the geoscientist for discovering oil and gas reservoirs. The method of Reverse Time Migration
(RTM) stands out by high imaging quality even in case of high geological complexity. Solving the
wave equation (rather than high-frequency approximations to this equation) realistically simulates the
propagation of waves through the subsurface and allows the exact imaging of structures with strongly
contrasting seismic velocities as they occur, e.g., for salt bodies.

With seismic imaging algorithms, one essentially solves a forward problem, i.e. one models the
full seismic wavefield in the presence of a given subsurface model which needs to be provided
as input and which is initially generated from some geophysical intuition. However, ultimately, the
geophysicists actually want to solve the inverse problem, i.e. one generates the subsurface properties
directly from the preprocessed reflection data.

The full waveform inversion (FWI) solves such an inverse problem and uses the adjoint method
to pose an iterative improvement of the physical model, typically parameterised in terms of wave
velocity and density. As such, during the optimization process several RTMs are performed. While
the Fraunhofer Reverse Time Migration (FRTM) is implementing a RTM, the Barcelona Subsurface
Imaging Tools (BSIT) implements a FWI using different parallelization strategies and optimization
approaches.

4.2 FRTM

FRTM implements the RTM method. By using proprietary HPC tools, FRTM is a massively parallel
and robust implementation of RTM that combines the necessary degree of accuracy with ultimate
efficiency.

The seismic reflection data comes as a set of single measurements, so called shots illuminating
different possibly overlapping subsurface regions. The typical input survey size is of the order of
10000s of shots. For a single shot computation, one has the source signal and the pre-processed
seismic reflection data as input whose typical size is of the order of a few megabytes. The source
signal is propagated forward in time. Afterwards, the receiver wave field is propagated backward in
time. For every physical time step, the zero-lag cross correlation of the source and receiver fields has
to be determined to form the final single shot image. Since the source and the receiver wave fields
get computed in different directions in time, one usually uses a checkpointing approach in order to
store the source wave field at certain time steps. These checkpoints are used to compute the source
wave field on the fly at intermediate time steps to be able to compute the cross-correlation. The wave
equation modeling for the propagation of the source and receiver signals is based on a Time Domain
Finite Difference (TDFD) discretization on a regular grid. The final image is constructed from single
shot results by stacking.
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4.2.1 Programming languages

FRTM is completely written in C++.

4.2.2 Libraries and other dependencies

FRTM uses GPI-2, the Global Address Space Programming Interface (GASPI) reference implementa-
tion and pthreads.

4.2.3 Paralleliation

Along the computation of the final result, there are two levels of parallelism involved. The upper level
computes a set of shots concurrently and evaluates partial sums, i.e. stacks the final result. This
is trivially parallel. On the lower level a single shot computation is distributed over several compute
nodes by domain decomposition. The non-local structure of the stencil operator requires boundary
data to be exchanged. This introduces a tight coupling between the subdomains and makes this
part of the parallelization non-trivial. Using a fine-granular decomposition of the single shot migration
output volume in combination with dynamic load balancing across several threads on the CPU level,
we yet achieve a high parallel efficiency. As communication library GPI-2 has proven to be best
suited in order to maximally overlap the communication by the computation with minimal overhead.
Scaling out to many thousands of compute cores nearly ideal scalability of the migration can still be
observed.

Shared memory parallelization The shared memory parallelization is done using the Asyn-
chronous Constraint Execution (ACE)-framework. ACE is an industry proven C++ library for the
description and efficient execution of task based algorithms for x86 CPU based shared memory
systems inside of a NUMA domain.

Figure 11 shows the components of ACE. The API provides an abstract interface for the definition
of tasks and for the construction of a task graph. The task graph describes the data dependencies
between the tasks of a given algorithm.

A pthread-based task scheduler manages the cores provided by the CPU. A thread is started once,
at the beginning of the application, for every core. ACE provides different pinning strategies in order
to increase data locality. The task scheduler extracts the tasks which are currently executable and
assigns them to free compute resources. The topology of the task graph is static along execution.
There is no dedicated scheduling thread. The check for preconditions to execute a given task and the
synchronization between threads is lightweight and does not produce significant overhead.

ACE is especially suited for iterative methods in which one and the same task graph is executed over
and over again for every iteration. In ACE, the task graph is stored for a single iteration only and every
task keeps separately track on its iterations by an internal state variable. This allows to get rid of a
global synchronization point terminating every iteration. Different iteration states can be represented
within the same task graph.
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Figure 11: ACE for task based data dependency driven execution.

Distributed memory parallelization The distributed memory parallization is done using the Global
Address Space Programming Interface (GASPI) API. GASPI provides single-sided communication
primitives which are supplemented by a lightweight synchronization mechanism within a Partitioned
Global Address Space (PGAS). As such, GASPI allows for a fine-granular control of the actual data
transfer and the subsequent data synchronization.

The finite difference discretization of the wave equation finally ends up in a stencil update. This
introduces dependencies among the sub-domains which are generated along the partitioning of the
problem. For the update of a boundary point remote information is required. The three-dimensional
data structures provided by FRTM contiguously integrate halo regions which incorporates the required
remote information. The data structures are allocated directly within the local partition of the global
address space. Communication along the slowest memory direction is done directly, i.e. without any
additional memory copies. For the other directions, the data to be communicated is non-contiguous in
memory. Here, it is advantageous to provide explicit communication buffers within the global address
space to which the data can be packed before the transfer and unpacked after the transfer. This
generates additional overhead, however, the data can be communicated within a single message
which is more optimal with respect to communication latency.

Double buffering is used for the actual 3D data structures and communication buffers, i.e. the
data structures are duplicated and used in an alternating fashion between the iterations. This, in
combination with the symmetric communication pattern generated by the symmetry of the stencil
operator allows to get rid of a lot of explicit synchronizations along the communication like e.g., the
synchronization that the target or source buffer for communication can be overwritten, such that
the critical path for communication and synchronization in FRTM is a single transfer. These explicit
synchronizations can be avoided since they are implicitly guaranteed by the inherent dependencies
provided by the algorithm.
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Accelerators

Currently, there is no explicit accelerator support in FRTM.

4.2.4 Typical use case

A typical use case migrates a selection of 𝑂(10000) shots. The typical grid sizes are of the order of
10003 grid points resulting in a minimal memory footprint of 24 GB for a single shot computation in
single precision.

4.2.5 Large use case

With seismic imaging algorithms, one essentially solves a forward problem, i.e. one models the full
seismic wavefield in the presence of a given subsurface model which needs to be provided as input
and which is initially generated from some geophysical intuition. However, ultimately, the geophysicists
actually want to solve the inverse problem, i.e. one generates the subsurface properties directly from
the preprocessed reflection data. Evaluating the structural properties using RTM is typically done in a
manual optimization process of the subsurface model. This includes several cycles of model building
and subsequent imaging using RTM. The image produced by RTM yields feedback for improvement in
the next modeling cycle. For the seismic expert who is adjusting the model parameters, it is desirable
to have updated results available immediately. The same holds for semi-automatic generation of the
subsurface model via Full Waveform Inversion (FWI) which essentially minimizes the least square
misfit between measured and modeled data. Ordinary optimization methods are used to achieve that.
In order to get to the final solution, a lot of RTMs (∼100) have to be performed. In combination with
an ever-increasing demand for more detailed spatial subsurface resolution this yields easily a factor
of 1000 in required compute power in comparison to today’s petascale systems on which current
RTMs are running. In RTM, the resolution is adjusted by an upper limit of the frequency which is
contained in the simulation. The time to solution for a single-shot migration scales with the fourth
power of the target frequency. For example, increasing the spatial resolution by a factor of two results
in an increase of a factor of 16 in the required computational effort.

4.2.6 Application requirements

Scaling

A representative benchmark which mimics industry use cases has been performed on SuperMUC at
LRZ on Sandy-Bridge utilising up to 4096 compute nodes.

Figure 12 shows the speedup achieved for a single shot computation using the TTI kernel. The time
to solution is dominated by the wave propagation kernel, which turns out to be bandwidth limited. The
speedup is measured in units of shots computed per hour. Each compute node includes 2 sockets
with 8 cores each, making that a total number of 65536 cores used at maximum. One process with
8 threads is launched on each socket using GPI-2 for inter-socket communication. The single shot
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Figure 12: TTI single shot scalability.

compuation scales over almost three orders of magnitude and shows the efficient parallelization of
the FRTM single shot computation.

Compute

FRTM uses fully roofline model optimized finite difference stencils of various orders for solving
the wave equation for isotropic, VTI, and TTI velocity models in order to maximize the throughput
measured in stencil operations in seconds. A SIMD abstraction layer provides a common interface to
several SIMD instruction set backends, including SSE and AVX. The number of stencil operations
which have to be performed on a single process is proportional to the number of process-local grid
points, 𝑁 = 𝑁𝑥 ·𝑁𝑦 ·𝑁𝑧, times the number of time steps to be performed. This typically depends on
the maximum depth to be imaged and may differ for the source wave field as well as the receiver
wave field.

Memory

The memory consumption is proportional to the number of process-local grid points, 𝑁 = 𝑁𝑥 ·
𝑁𝑦 · 𝑁𝑧, multiplied by the number of arrays which are required for the simulation. This is a com-
bination of the number of simulation fields 𝑁𝑓𝑖𝑒𝑙𝑑 and the number of model parameters 𝑁𝑚𝑜𝑑𝑒𝑙.
This has to be supplemented by the memory required for the communication buffers, 𝑁ℎ𝑎𝑙𝑜 =
2𝑟 (𝑁𝑥𝑁𝑦 + 𝑁𝑥𝑁𝑧 + 𝑁𝑦𝑁𝑧). Hence, the total memory consumption is given by 𝑁𝑚𝑒𝑚𝑜𝑟𝑦 ∝
(2 ·𝑁𝑓𝑖𝑒𝑙𝑑 + 𝑁𝑚𝑜𝑑𝑒𝑙)𝑁 + ·𝑁ℎ𝑎𝑙𝑜.
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IO

FRTM uses custom designed random perturbation boundary conditions which make the software
free of any IO of intermediate results that would typically be of multi-terabyte scale for each of the
10000s of shots. This IO is quite often a major reason why other implementations fail in computing
large scale problems. In contrast to that, FRTM only needs to read the input data at the beginning of
the computation of a shot and needs to write the final image at the end. For this, FRTM does not use
any special IO library. The file format which is used is SEG-Y and/or SU.

Malleability and resilience

The application can run on x86 resources. It can dynamically include or release compute nodes after
it has been launched, i.e. while it is running. A failed shot computation is automatically rescheduled up
to three times. After the third failure, the shot is marked as failed and is no longer rescheduled. If the
job fails completely, FRTM can be restarted automatically from the last consistent state available.

4.3 BSIT

For geophysical inverse problems, BSIT includes fully operational seismic inversion capabilities.
These are based upon the full-waveform inversion (FWI) algorithm which uses the adjoint method
to pose an iterative improvement of the physical model, typically parameterized in terms of wave
velocity and density, see Figure 13. BSIT is a production-ready package that has been tested on
many hardware platforms (with both CPU and GPU kernels).

Seismic data comes from active surveys, where artificial sources (shots) generate seismic waves
which interact with the subsurface and are recorded at a group of receivers. Each simulation of
a single shot, which could be a forward modelling or inverse modelling case, and is independent
from each other. Thus shots are executed by binaries which we call kernels. A typical run can
involve hundreds of thousands of kernel calls, which take more than 90% of the compute time. The
efficiency of kernels and the distribution of kernels among the available computational resources is
thus paramount to the proper execution of BSIT.

In FWI, or inversion mode, a kernel performs two wavefield simulations per shot, such as in FRTM.
The forward run simulates a shot and records the synthetic traces at receiver locations. The backward
run uses the differences between data and synthetics as sources for the simulation and runs backward
in time. The wavefields of forward and backward simulations must be correlated in order to produce
the main output of the FWI kernel: a 3D gradient of the parameter inverted. The wavefields correlated
need to be previously stored and read inside the kernel execution and later can be removed before
the kernel finishes. In this regard, the behaviour of a single FWI kernel is similar to that of FRTM.
The gradients from each kernel need to be stacked, or summed pointwise for all shots. The gradient
provides the direction of change in the model within the inversion process. Together with few test runs
(between two and six typically) the model becomes updated: we have performed a single iteration of
FWI. Optimization requires about 15-30 iteration steps per frequency band used and typical runs use
3-10 frequency bands.
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Figure 13: Top: initial model of velocity. Bottom: Result of BSIT’s FWI

BSIT is a proprietary code with a high level of maturity and several other configurations besides FWI.
Therefore, within DEEP-SEA all experiments and optimization approaches will use a BSIT analog
referred to as BSIT Mockup. This code was built to emulate the characteristics of BSIT (e.g data
workflow, numerical schemes, parallel paradigms, etc) without the functional capability of the original
BSIT code. Furthermore, the functions of task distribution use a different paradigm from BSIT, which
is based on a master–worker approach. The Mockup is easily configurable and modifiable, thus
providing an ideal environment to investigate different optimization and porting strategies. Specifically,
during the project we will explore storage and memory usage technologies on novel architectures
such as Xeon Phi, Post-K Fujitsu; Cascade Lake with Optane or servers with heterogeneous memory.

Numerical scheme Seismic waves are simulated solving a partial differential equation, in general
elastodynamics. BSIT uses a first-order version of the PDE which reads as follows [15].⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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𝜕𝑥𝑢

𝜕𝑦𝑣

𝜕𝑧𝑤

𝜕𝑧𝑣 + 𝜕𝑦𝑤

𝜕𝑧𝑢 + 𝜕𝑥𝑤

𝜕𝑥𝑣 + 𝜕𝑦𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

𝜌𝜕𝑡𝑢 = 𝜕𝑥𝜎𝑥𝑥 + 𝜕𝑦𝜎𝑥𝑦 + 𝜕𝑧𝜎𝑥𝑧

𝜌𝜕𝑡𝑣 = 𝜕𝑥𝜎𝑥𝑦 + 𝜕𝑦𝜎𝑦𝑦 + 𝜕𝑧𝜎𝑦𝑧

𝜌𝜕𝑡𝑤 = 𝜕𝑥𝜎𝑥𝑧 + 𝜕𝑦𝜎𝑦𝑧 + 𝜕𝑧𝜎𝑧𝑧

(4.2)

The variables are six different stress components (three compressional stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧,
and three shear stresses 𝜎𝑦𝑧, 𝜎𝑥𝑧 and 𝜎𝑥𝑦). Stresses induce material instantaneous strains that are
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quantified in terms of displacements, in particular the displacement time derivatives or velocities 𝑢, 𝑣,
and 𝑤 in the 𝑥-, 𝑦- and 𝑧- directions, respectively. The parameters of the equations are 𝐶, which is a
symmetric 6× 6 matrix, referred to as the stiffness matrix, and the density 𝜌. Such parameters are
constant but may vary spatially in heterogeneous media.

Symmetry of the stiffness matrix 𝐶 results in 21 potentially independent values. When additional
symmetries are present, fewer values are needed to populate 𝐶. For example materials known as
monoclinic, orthorhombic and transversely isotropic, display 13, 9 and 5 independent parameters,
respectively. A frequent case is that of isotropy, where two parameters suffice to populate 𝐶 or
even acoustic behaviour (e.g. the one used in FRTM) where a single parameter is used, and further
simplifications can be made in the PDE. In this work, we will use a full anisotropic assumption,
often referred to as triclinic, of which all other material types are particular cases. We remark that
using such an assumption we can also include realistic topography in our simulations, as explained
in [16].

As a solver we use explicit time-domain staggered-grid finite-differences (FD). The spatial finite
differences use a fully-staggered grid (FSG, see e.g. [17]) approach, which builds FD cells that
include 4 full stress representations and 4 full velocity representations (i.e. a total of 36 variables per
cell) and one full set of parameters (i.e. density and C, totalling 22 parameters per cell) as depicted
in Figure 14. Materials are stored in a single vertex of the FSG cell albeit they must be present at
all vertices at compute time. With this strategy we save memory, trading storage per computation.
Our time scheme is order 2 in time, of the leapfrog type. This means that stresses and velocities are
defined half a time-step away from each other. In this way central differences are used to solve the
PDE with accuracy. Regarding the spatial integration, our solver uses order 8 finite differences, which
means that our stencil reaches 4 cells in each direction, both forwards and backwards. Within ABC
buffer layers we revert to order 2 accuracy and, whenever a free-surface condition is present, we use
specific asymmetric stencils known as mimetic stencils (see [16]).

4.3.1 Programming languages

BSIT is exclusively written in C.

4.3.2 Libraries and other dependencies

BSIT uses multithreading-enabled MPI, OpenMP, OpenACC and CUDA. There have been forks using
OmpSs as well. Furthermore, for FFT calculations BSIT uses either FFTW3 or MKL depending on
the platform.

4.3.3 Parallelization

There are several parallelization levels in BSIT, at different scales of granularity. These are summa-
rized in the following.
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Figure 14: 3D finite-different stencil for each FSG cell.
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Figure 15: Domain decomposition strategy at kernel.

Shared memory parallelization Starting at the innermost part of the computation, the kernel
updates velocities using 12 different 3D stencils plus another 12 3D material interpolations for each
grid cell. On the other hand, the computation involves 24 3D-stencils for stresses plus 84 3D
interpolations for the material properties to update stresses. We remark that material interpolations
are 2nd order accurate and hence much less expensive than the variable stencils, which are high-order
accurate. This, in turn, results in both velocities and stresses calculations being typically dominated
by accesses to main memory to retrieve the data needed to update the corresponding values. The
resolution of the PDE consists in two outermost loops which are collapsed and parallelized using
OpenMP, leaving to each thread a number of consecutive memory regions to update. Using this
approach, each thread is pinned to each CPU core. Physically, CPU cores are divided in two different
sets, each set belonging to one CPU socket. Logically, this division can also be seen as different
NUMA nodes. By adding one more level of parallelism using MPI and allocating one MPI task per
socket (or NUMA node) we are able to pin each OpenMP thread to the core closer to the memory
being used by this thread. Also it worth mentioning that in most program implementations, developers
leave the default OpenMP loop scheduling algorithm set. In OpenMP, a static scheduling has not
necessarily reported the best performance values. Our previous studies, including static, dynamic
and guided scheduling strategies, point out that dynamic scheduling is the best option to achieve the
highest performance in our case.

Distributed memory parallelization For the scenarios where a shot (i.e. a kernel) does not fit in a
computational node in terms of memory, we use domain decomposition. As occurs with the FRTM
application, in those cases, the global domain of the kernel is divided into small sub-domains and
computed separately onto different computational nodes or accelerators. MPI routines are used for
such inter-domains communication, including exchange, gather and scatter data when needs. To a
naive domain decomposition strategy, we have added several improvements towards better scalability.
At each simulation time step, we split all compute functions into two stages, which are functionally
identical but update different regions of each domain. In particular we divide regions whose update
depends only in local values (i.e. memory in the current domain or NUMA node) and regions that need
updated information from neighbouring domains in order to be updated. Moreover, we restrict domain
decomposition to a single dimension (namely 𝑦 in our case), hence the topology of communications is
much simpler and each buffer region relates to one neighbour at most. Such an approach allows for
overlapping memory transfers and computation when using a domain decomposition strategy. Phase
1 computations perform the update of cells which belong at the buffer regions. Then, at Phase 2,
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Figure 16: Weak efficency in GPUs (left) and efficiency in Mcells/s for different architectures (right).

these updated values can be transferred to neighbouring domains simultaneously (asynchronously)
while updating the rest of the cells in each domain (see e.g., Figure 15). Moreover, as part of the
snapshot correlation step, we need to either dump the value of the snapshots to disk (at the forward
stage) or read the previously stored snapshots from disk (at the backward stage). Such temporary
data storage can result in large I/O bottlenecks on the overall kernel execution for large runs. Our
baseline version of the code overlaps both I/O and compute operations which mitigates the problem
and speeds up the code execution significantly.

We remark that BSIT, and not its Mockup, includes a workflow manager based upon a master–worker
paradigm with full checkpointing/resilience capabilities. This is not present in the Mockup in its current
version.

Accelerators

Currently, the BSIT mockup supports computing on accelerators, using both CUDA and OpenACC
libraries. Tests include KNL, KNC as well as Volta and P9 NVIDIA GPUs, see Figure 16.

4.3.4 Typical use case

A typical use case inverts a model with a selection of 𝑂(1000) shots. Notice that, contrary to migration,
FWI is a complex iterative process where more than 100 iterations are expected to do and where
each iteration executes a migration-like simulation with the whole set of shots and between 2 and 6
modelling simulations (that do not perform intensive I/O), also with the complete set of shots.

FWI executions boast an outermost loop that controls frequency, typically cycling from low- to high-
frequencies. Wavefield simulations as those present in BSIT Mockup’s kernel increase by ×8 in
memory and ×16 in compute time and temporary storage when we double the frequency. BSIT’s
Mockup implements an adaptative grid-resize mechanism that take care of projecting results and
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interpolating models between frequencies. A typical case results in a footprint between ∼15 GB to
more than 40 GB for a single-shot computation in single precision.

4.3.5 Large use case

A large case is typically the same as the typical case, only with larger frequencies at the latest
iterations. In this case the memory footprint can reach 200 GB per shot.

4.3.6 Application requirements

Our application expects a 3D model provided in binary format and data provided in SEG-Y format, as
well as metadata related to the geoposition of the model. A global filesystem is expected for IO.

Scaling

At system level there exists embarrassing parallelism between shots or kernels, hence the scalability
at this level is almost perfect. It domain decomposition is mandatory, BSIT’s Mockup can be efficient if
the ratio between inner cells and buffer cells is about 8 or higher. Otherwise the kernel loses parallel
efficiency due to communication overheads (see Figure 17).

Figure 17: Scalability at Sandy Bridge, both at kernel level and system level.

Compute

Most of the computing time happens at kernel level. The system performs best if kernels can be kept
inside a single NUMA node. The system relies on a global access file system to store persistent data
and also a scratch disk to dump temporary data.
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Memory

The memory consumption is proportional to the process local number of (single precision float-
ing point) grid points 𝑁 = 𝑁𝑥 · 𝑁𝑦 · 𝑁𝑧 multiplied by the number of arrays which are required
for the simulation. This is a combination of the number of simulation fields 𝑁𝑓𝑖𝑒𝑙𝑑 and the num-
ber of model parameters 𝑁𝑚𝑜𝑑𝑒𝑙. This has to be supplemented by the memory required for the
communication buffers 𝑁ℎ𝑎𝑙𝑜 = 2𝑟 (𝑁𝑥𝑁𝑧). Hence, the total memory consumption is given by
𝑁𝑚𝑒𝑚𝑜𝑟𝑦 ∝ ((2 ·𝑁𝑓𝑖𝑒𝑙𝑑 + 𝑁𝑚𝑜𝑑𝑒𝑙) ·𝑁 + 𝑁ℎ𝑎𝑙𝑜) · 𝑓𝑙𝑜𝑎𝑡32.

IO

BSIT is not using any external software library for IO management. For each of the thousands of
shots that are executed, 2D (time-space ordered) and 3D ([𝑁𝑧, 𝑁𝑥, 𝑁𝑦] models) RAW data is read
from disk. During each, or few, computed time steps, a snapshot is written to disk that will be read at
a future stage. The size of the snapshot is approx. 𝑁𝑧 ·𝑁𝑥 ·𝑁𝑦. The size of snapshots depends
on the domain decomposition and the number from the simulation’ time steps. The output of the
simulation are several 3D (of size [𝑁𝑧, 𝑁𝑥, 𝑁𝑦]) binary files. Additional outputs are possible only for
QC purposes.

Malleability and resilience

BSIT has been deployed in many different environments, mainly with x86 architectures but also
with IBM Power and NVIDIA GPU accelerators. Domain decomposition cannot be configured
automatically and must be set prior to launch the simulation, manually. However, the baseline code
can detect NUMA hardware on the fly and optimize the execution setup in run-time to attain a higher
performance. Regarding resiliency and malleability (i.e. the dynamic allocation of compute resources),
BSIT provides fault tolerance mechanisms at workflow level, including restarts, kernel execution
retries, assigning nodes to a black list on-the-fly when those fails and also adding/removing resources
on the fly. However, the Mockup (BSIT like-version), given its R&D use, focuses on performance
rather than on dependability. Hence no resilience mechanisms are implemented.
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5 GROMACS - Molecular Dynamics

5.1 Introduction

GROMACS is an open source framework for Molecular Dynamics (MD) simulations of systems
ranging from a few hundred to millions of atoms [18]. GROMACS has been widely used in several
biological systems, including recently the COVID-19 virus.

Recent GROMACS versions are written in C++ and have more than a million lines of code. GROMACS
is capable of running in heterogeneous computers consisting of multiple nodes with CPU and GPUs.
When compared to many other Molecular Dynamics simulation frameworks such as Amber and NAMD,
GROMACS exhibits relatively good performance. However, one of the computational bottlenecks,
especially towards exascale computing, remains the 3D Fast-Fourier Transform (FFT) used for the
Particle Mesh Ewald (PME) calculations.

Within DEEP-SEA, our goal is to improve the performance of the electrostatic solver based on 3D
FFT. In particular we aim at integrating into GROMACS a parallel and accelerated 3D FFT library
resulting from the work in DEEP-SEA WP4 on the DaCE framework. As the first step of this work, we
conduct a profiling study and investigate the scaling behavior, hot spots, and time spent on different
modules focusing on the 3D FFT. For the initial profiling study, we have used the Tetralith, a Swedish
supercomputer with 1,908 compute nodes (each with two Intel Xeon 16-cores CPUs). The profiling
analysis has been carried out using the ARM-MAP software and using the built-in performance
counters. For the scalability analysis, we study two systems: one system with approximately 30,000
atoms and one system with 0.85 million atoms. In addition, the performance of different FFT modules
has been evaluated as this is one of the significant computing and data transfer intensive segments
of the code. In particular we profile the performance of three HPC FFT libraries: FFTW, FFTpack,
and MKL-FFT libraries. This performance study will provide a performance baseline we will use for
comparing the performance of 3D FFT developed in WP4.

5.2 Molecular Dynamics

MD simulations mimic the dynamics of the particles in a self-consistent field. In a naive implementation
of MD codes, the field calculation requires 𝑁2 calculations where 𝑁 is the number of particles in
the system. For this reason, MD calculations can mainly be classified as compute-driven. However,
for systems with large sizes, e.g., with millions of atoms, parallel communication also becomes an
equally demanding segment. However, improvement of the MD algorithm can be achieved. For
instance, it is possible to divide the field calculation into short-range field calculations and long-range
field calculations. For the short-range computation, we can consider only the field contribution of
particles within a cut-off distance, reducing the number of short-range interactions drastically. For
the long-range field calculations, we can use the PME approach. In the PME approach, a grid is
introduced in the simulations, and an electrostatic potential is calculated on it. For this, the FFT is
used. The PME usage makes the cost associated with electrostatic calculations 𝒪(𝑁𝑔 log𝑁𝑔) where
𝑁𝑔 is the number of grid points. In this way, the actual computational cost is not of the order of 𝑁2. For
the calculations of short-range interactions, the computing nodes need to know the coordinates of the

DEEP-SEA - 955606 39 31.07.2021



D1.1 Initial application co-design input

particles’ positions and those within a cut-off distance (usually 15–20 Å). However, the calculations of
the long-range part of the interactions require coordinates of all the particles. The computing of such
contributions requires all-to-all communications.

In parallel field computation, GROMACS splits the processes into processes to compute the short-
range interaction (called Particle-Particle or PP) and processed to compute the PME and the long-
range calculations. In DEEP-SEA, we focus on improving the performance of the PME calculations
requiring the usage of 3D FFT. The all-to-all type communication in the 3D FFT drastically affects
GROMACS performance and the parallel scaling, especially going towards to exascale. Typically,
the PME calculations are carried out on one-third of the total number of ranks available. The typical
size of the data generated during MD (positions of all the particles and velocities as a function of
time stored for carrying out various analyses of various structural and dynamical properties) can
be from a few 10s to a few hundred GB depending upon the time interval defined for storing the
coordinates/velocities.

5.2.1 Programming languages

The GROMACS software is entirely written in C++ and uses SIMD acceleration on a wide range of
architectures. It also supports GPU offloading acceleration and both OpenMP and MPI parallelism
within and between nodes.

5.2.2 Libraries and other dependencies

Within DEEP-SEA, we focus on PME calculations with 3D FFT. For computing the long-range part of
the electrostatic interactions, the PME method is used, which involves FFT. GROMACS allows the
selection of different FFT libraries: FFTW3, FFTPACK, MKL-FFT. To use a different FFT library in
GROMACS, an adaptor needs to be developed in GROMACS to factor the GROMACS data layout
into the FFT library layout.

The visualization of trajectories is usually performed by using various software such as VMD, PYMOL,
and Chimera. The time evolution of various properties (namely energies, RMSD, RMSF) can be
viewed using xmgrace and Matlab.

5.2.3 Parallelization

The parallelization in GROMACS is achieved using both OpenMP and MPI on homogeneous super-
computers. The particle positions within a cutoff distance are required for the short-range interaction
calculations. These data are shared using point-to-point communication between the ranks (referred
to as PP ranks). The positions and charges of all particles in the simulation box are required to
compute long-range interaction using the PME method. These data are communicated using all-to-all
type communication between the PME ranks.
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Accelerators

GROMACS has been ported to several accelerator architectures, including NVIDIA and AMD GPUs
and IBM Cell accelerator. Different programming systems have been used for programming GRO-
MACS on accelerators, including CUDA. OpenCL, and SYCL. In general, accelerators provide a
considerable performance enhancement (mainly on the PP part): previous benchmarking studies
show three times faster performance of GPU version when compared to CPU version. GROMACS
can offload the computer heavy direct PP interaction calculation to GPUs. However, the PME elec-
trostatics calculation is performed on CPUs. As part of this work, we plan to evaluate the PME
performance also on accelerators offloading 3D FFT calculations to GPUs and FPGAs. GROMACS
developers at KTH are also working on a version that can be compiled using OpenACC, OpenCL,
and HIP programming languages.

5.2.4 Typical and Target Use cases

We study two systems with different numbers of particles and grid cells for the typical and target use
cases. The typical use case employs 30,000 atoms, while the target use case employs 0.85 million
atoms. These simulation setups are designed to study virus capsids, virus particles (capsid with
genome), viral spike proteins in complex with mammalian cell receptors. The system size in these
cases can easily reach a few million atoms. Given that more serious viruses appear in nature, it will
be important to study such larger-sized systems for designing novel drugs to treat viral infections. So,
we study such systems with the help of GROMACS in HPC with the DEEP-SEA architecture. We will
investigate the viral spike protein in complex with full human-ACE2 receptor as the target system.

5.2.5 Application requirements

Scaling

We performed scaling tests on the Tetralith supercomputer with approximately 1,700 nodes, Intel
Xeon GOLD6130 CPU with 32 cores. In the typical use case (30,000 atoms), the peak performance
was observed for 512 cores. In the target use case (0.85 million atoms system) a near-linear scaling
in performance with the number of cores was observed up to 8,000 cores. The scaling behaviour in
smaller systems should be attributed to the dominant contribution from the communication segment
rather than the computation.

Further, the GROMACS installation with FFTW (the default FFT library used during compilation)
showed very poor scaling. However, the scaling behaviour and performance of GROMACS with other
FFT libraries (such as FFTpack, MKL-FFT) exhibited better performance and scaling properties in
the use cases.
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Compute

The GROMACS particle mover phase, responsible for the particle trajectory calculations, is compute-
bound and can easily take advantage of accelerators, such as GPUs and FPGAs. However, the 3D
FFT operation is a memory-bound operation (as it requires transpositions) and is typically carried on
CPUs. In this deliverable, we focus on profiling different 3D FFT packages in GROMACS on CPUs as
this is the typical usage. However, we plan to develop and test 3D FFT in GROMACS also on NVIDIA
and AMD GPUs. Possibly, we will also investigate 3D FFT porting to FPGAs.

Workflow

The workflow involved the following main tasks: (i) testing the scaling behaviour of GROMACS, (ii)
evaluating the computational cost involved in the different subprocesses of long-range interaction
energy calculations using the PME method, and (iii) evaluating the performance of various FFT
libraries, namely FFTW, FFTpack, MKL-FFT for the PME computations.

We have prepared systems of two sizes with approximately 30,000 atoms and 0.85 million atoms, and
the systems are heterogeneous in nature where biomolecules, namely lysozyme and spike protein:
human ACE-2 complex embedded in water. The short-range interactions are computed by dedicated
particle–particle (PP) ranks which compute the interactions using domain-decomposition approach. In
this, the whole simulation box (can be cubic, orthorhombic, triclinic) is divided into 3D grids, and these
cells (referred to as domain decomposition cells) are assigned different PP ranks. The integration
of the equation of motion of the particles within the domain is fully handled by a specific PP rank.
The required particle positions from the neighbouring cells are transferred through point-to-point
communication. For testing the performance of different FFT libraries, we have compiled GROMACS
with various FFT libraries (FFTw, FFTpack, MKL-FFT). The profiling of GROMACS has been done
with in-built timers in GROMACS itself. In addition, we have used a profiler, Arm-MAP/21.0.1. The
load imbalance due to domain decomposition and PP/PME workload imbalance has been investigated
along with the analysis of wall time on different computing segments.

Profiling results

We perform scaling tests for the typical and target use cases. Figure 18 shows the performance of
GROMACS with an increasing number of cores. We have used 1–256 nodes, and the number of
cores involved in computing was in the range of 32–8,192. The analysis used the in-built timer of
GROMACS, which provides a time scale that can be accomplished in a day. The presented results
are based on five independent MD simulations. We used 10,000 MD steps for doing this analysis. As
can be seen, the system with a smaller size (having 30,000 atoms) showed peak performance for
512 cores. With the use of more cores, the performance goes down as the communication segment
of the program starts dominating over the computing segment. So, when the system size is smaller,
it is not recommended to use more than eight nodes. However, for the large-sized system, the
performance increases monotonically until up to 8,192 cores which shows the efficient parallelization
of this GROMACS implementation. However, a poor scaling behaviour is observed for the default
FFT library (FFTW), which showed peak performance for 512 cores (as it was found for the typical
use case). This study clearly shows the role of FFT libraries in the scaling behaviour, and one has to
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Table 1: Performance dependence on the number of grids used in FFT.

Fourier Spacing, nm nx ny nz Performance, ns/day Mflops % Flops

0.12 60 60 60 175.9 440065 2.6

0.06 120 120 120 86.5 5729424 29.5

0.03 240 240 240 27.0 52471581 78.8

be careful about this at the time of compilation. Our goal is to improve the performance of PME and
FFT using the DaCE-based FFT library.
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Figure 18: GROMACS parallel scaling on the Tetralith supercomputer.

Given that the computing associated with the long-range part of the interaction is playing a major role
in performance, we analysed the cost associated with the number of grid points and CPU time spend
on different parts of the PME scheme using FFT. In particular, the long-range interaction involves
setting up a 3D grid controlled by the input spacing parameter. The default value in GROMACS is
0.16 nm. Table 1 shows the performance in ns/day and %Flops. As can be seen, the grid spacing
parameter plays a major role in dictating the performance and scaling behaviour of GROMACS. When
the grid spacing was reduced from 0.12 nm to 0.06 nm, the performance went down by 50%, and
when the spacing was reduced to 0.03, the performance went down to 15%. The study shows that
one has to be very careful in choosing the grid spacing, e.g., the number of grid points for the FFT
calculation. In fact, reducing the grid spacing from 0.12 nm to 0.06 nm does not necessarily improve
the accuracy of the electrostatic energy computation.
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Table 2: Wall time spent on different segments of PME calculation.

FFT Send X to PME PME mesh PME wait for PP Wait+Recv. PME F

FFTW 43.5 5.3 8.8 1.7

MKL-FFT 2.1 2.0 22.5 2.2

FFTPACK 0.1 1.7 23.2 1.8

We have also tabulated (refer to Table 2) the wall time spent on data transfer and computing, and
the results are presented for three different GROMACS installations. As we have discussed above,
the FFTW performed poorly. If we analyse the wall time spent on PME force calculation (presented
as PME mesh in Table 2), we can observe that the FFTW version consumes twice more time than
the other two cases. The most interesting part is that the wall time spent on data transfer from PP
ranks to PME ranks is 44% for the FFTW, while in the other two cases, it is significantly low (in the
range of 0.1 to 2.1%). In contrast, the waiting time for PME ranks to receive data from PP ranks was
significantly higher in these two cases (22.5 to 23.2) when compared to 9% corresponding to FFTW
version. Interestingly, the performance of different FFT libraries in the scaling behaviour seems to
have origin in the time spent on data transfer from PP to PME ranks and PME ranks waiting for data
from PP ranks. The time spent on computing itself is comparable for the three versions.

The profiling analysis also shows that for the large-sized system, the load imbalance was about 25%.
In this, about 16% was due to domain decomposition, and the remaining was due to load imbalance
between PP/PME ranks. The former performance slow-down can be improved by using fewer cells
(during domain decomposition) along the direction where the simulation box inhomogeneity is higher.
The load imbalance in PP/PME ranks can be improved by accommodating more processes for doing
PME.

Memory

Depending upon the system size, the memory usage can be from a few hundred MB to few tens
of GB. In GPUs (using MPI-CUDA version of GROMACS), effective memory management can be
done by allocating PME tasks to GPUs while doing particle–particle interaction calculations within the
CPUs.

IO

GROMACS supports several file formats, including GROMACS-specific formats and other file formats
such as PDB. The master node is responsible for IO operation for IO. Parallel IO libraries, such as
HDF5 and NetCDF, are not used. The typical output file size depends on the simulation parameters
and in particular on the number of particles in use. Simulations with 30,000 and 0.85 million particles
require approximately 1.5MiB and 40MiB (in double precision) output.
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Malleability and resilience

The GROMACS has the potential to run on laptops, desktops, workstations, supercomputers with
GPUs, and in any computers with heterogeneous architectures. On most occasions, the software
itself identifies efficient ways to distribute the tasks. For example, the PP and PME tasks are allocated
to different groups of ranks in multiple CPU machines. Similarly, the task allocation between the
CPUs and GPUs is also efficiently handled by the software. The domain decomposition scheme
is also implemented efficiently, and this takes care of distributing the particle–particle interaction
calculations to various ranks within the PP group of ranks.

GROMACS supports checkpointing / restart capabilities using the .cpt format.
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6 Computational Fluid Dynamics

6.1 Introduction

Computational Fluid Dynamics (CFD) is at the heart of modern engineering and an indispensable tool
for a qualitative and quantitative analysis of the flow of fluids in areas such as automotive, aerospace,
energy, weather and climate. A significant topic here is turbulence, as about 10% of the energy use
in the world is spent overcoming turbulent friction [11]. Improvements in this area have thus a clear
environmental and societal impact. Furthermore, with a virtually unbounded need of computational
resources, CFD is a natural driver for exascale computing [12].

6.2 Nek5000

Nek5000 is an open-source computational fluid dynamics code based on the spectral element
method. Nek5000 solves the incompressible Navier–Stokes equations, together with a number
of additional physics (heat transfer, magneto-hydrodynamics, low Mach number, electrostatics) on
general hexahedral spectral elements. Special focus is laid on single-core efficiency via fast tensor
product operator evaluations. For high-order methods, assembling either the local element matrix or
the full stiffness matrix is prohibitively expensive. Therefore a key to achieving good performance in
spectral element methods is to consider a matrix-free formulation, where one always works with the
unassembled matrix on a per-element basis. Gather–scatter operations are used to ensure continuity
of functions on the element level, operating on both intra- and inter-node element data.

6.2.1 Programming languages

Nek5000 is mainly written in Fortran 77, with communication (and some I/O) routines implemented in
C as a separate library gslib.

6.2.2 Libraries and other dependencies

The application can be built with a set of optional libraries, ParMETIS to enable graph-based mesh
partitioning, p4est providing adaptive mesh refinement, HYPRE for algebraic multigrid preconditioners
and VisIt libsim or ParaView Catalyst for in-situ analysis.

6.2.3 Parallelization

The code uses distributed memory parallelization, following the matrix-free numerical formulation and
distributes the workload, whole spectral elements, based on a recursive spectral bisection or dual
graph-based bisection of the computational mesh.
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Communication in Nek5000 is mainly due to collective operations from inner-products, norms, and
gather–scatter operations for ensuring continuity between elements. The current gather–scatter
library in Nek5000 utilities three different communication strategies: nearest neighbour exchange,
message aggregation, and collectives, to efficiently perform communication on a given platform.

Accelerators

Nek5000 is undergoing a considerable development effort to efficiently support accelerators. The
entire solver runs on NVIDIA GPUs using a combination of OpenACC directives for the bulk of the
application and CUDA for performance-critical kernels. Support for AMD accelerators is currently
being developed using a similar strategy with OpenMP target offloading for most of the code and
native HIP for performance-critical kernels.

6.2.4 Application requirements

6.2.5 Typical use case

Typical use cases for Nek5000 are high fidelity flow simulations of turbulent flow using 6–9th order
polynomials on meshes with 100,000–500,000 hexahedral elements, resulting in hundreds of millions
of grid points.

6.2.6 Large use case

Large use cases often use more than one million elements, with the same 6–9th order polynomials,
thus billions of grid points. For example, the current pre-exascale use cases are in the order of 50
billion grid points (50 million elements) and require close to a terabyte of data per checkpoint.

Scaling

The scalability of Nek5000 has been investigated in several studies [14, 13], primarily focusing
on traditional scalar processors. On these platforms, the code is mainly limited by latency and
synchronization costs and will scale strongly down to 10–30 elements per Processing Element (PE),
depending on polynomial order.

To illustrate the scalability of a typical use case, we consider the Taylor–Green Vortex (TGV) problem
at a Reynolds number of 5000. In Figure 19 (left), the average time per time-step is shown for
solving TGV on a Cray XC40, using a mesh with 262,144 elements and ten quadrature points in
each direction (ninth order polynomials). For this configuration, Nek5000 scales well down to 8–16
elements per PE, before communication costs starts to dominate and affect scalability.

Weak scalability studies are often performed using Nekbone, Nek5000’s proxy application. Nekbone
solves the Poisson’s equation and has a code structure that resembles the basic structure of the full
code. Due to its smaller size, Nekbone is often used to evaluate the performance on new architectures
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Figure 19: Strong scaling results for Nek5000 (left) for solving the Taylor–Green vortex problem, and
weak scaling results for Nekbone (right), both running on a Cray XC40.

and as a testbed for code porting and kernel tuning. Figure 19 (right) gives weak scaling results for
Nekbone on a Cray XC40.

Compute

Memory

Memory usage in Nek5000 depends on the number of elements 𝐸 and the polynomial order 𝑁 . The
code uses roughly 400 8-byte words per degree of freedom (dof), where each element hold (𝑁 + 1)3

dofs (assuming the same polynomial order in each direction).

IO

Application IO is performed using MPI-IO, in Nek5000 own file format.

Malleability and resilience

The main flow solver in Nek5000 is not able to utilize different resources nor adjust to available
resources at runtime. However, in-situ analysis can be co-scheduled on different resources as well
as ensemble runs.

For resilience, Nek5000 periodically write a set of checkpoint files, allowing for a proper (high-order
time integration) restart.
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7 Neutron Monte-Carlo Transport for Nuclear
Energy

7.1 Introduction

The French Alternative Energies and Atomic Energy Commission (CEA) is a large French Research
and Technological Organisation (RTO). CEA is a key player in research, development and innovation
in four main areas: low carbon energies (nuclear and renewable energies), technological research for
industry, fundamental research in the physical sciences and life sciences, defence and security.

The solution of the linear Boltzmann equation by the Monte Carlo method is based on the simulation
of a great deal of random particle trajectories within the considered system. The ensemble averages
of the simulated trajectories provide estimates for the physical observables of interest. The Monte
Carlo trajectories describe random walks whose mathematical properties are chosen to take into
account the physical laws of particle–matter interaction, to the best of our knowledge. Since the
method does not require any space, energy or angle discretization, Monte Carlo has always been
considered as the golden standard for the study of nuclear reactors. This desirable property comes
at the price of a somewhat slow statistical convergence, with uncertainties scaling as the inverse of
the square root of the number of simulated histories. In turn, the basic Monte Carlo algorithms lend
themselves well to massive parallelization, which can help mitigate the slow convergence.

Until very recently, the large CPU requirements of Monte Carlo simulation have almost exclusively
limited its use to the study of stationary problems within systems with a predetermined set of
temperatures and compositions (i.e. without any physical feedback loop). However, the computing
power and available storage have now grown to the point where it is possible to run true “numerical
experiments” in realistic configurations using Monte Carlo.

Today, the goal of Monte Carlo neutron transport is the simulation of full-core configurations, in
non-stationary conditions (quasi-static depletion calculations and true dynamic calculations with
physical feedback). This requires a deep revision of the architecture of Monte Carlo codes; indeed, it
is crucial to efficiently exploit the massive parallelism and vectorization which characterize modern
machines.

The PATMOS code, developed at CEA, has been designed to explore the requirements of next-
generation Monte Carlo neutron transport, in terms of code architecture, parallelism, algorithms,
memory and CPU time. The goal of PATMOS is to demonstrate the feasibility of Monte Carlo
calculations for the depletion of a full-scale pressurized water reactor, taking into account thermo-
hydraulics and thermo-mechanical feedbacks.

7.2 PATMOS

PATMOS prototypes the next generation of applications used for nuclear reactor physics, nu-
clear safety and radiation shielding (see Figure 20). It is written in C++ and relies on the hybrid
MPI+OpenMP programming model to express massive parallelism.
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Figure 20: A three-dimensional representation of the fission rate calculated by PATMOS in the
Hoogenboom-Martin benchmark.

for 𝑖sample ← 1 to 𝑛sample do
source← InitSourceParticles();
for particle ∈ source do

while IsAlive (particle) do
material← FindMaterial(particle.position);
Σ← 0;
for nuclide ∈ material do

𝜎 ← ComputeCrossSection(nuclide,material.temperature);
density← nuclide.density;
Σ← Σ + 𝜎 × density;

end
particle.position← SampleNextInteractionPoint(Σ);
nuclide← SampleCollidedNuclide(material);
reaction← SampleReaction(nuclide);
particle← UpdateParticleState(reaction);

end
end
AccumulateScores (𝑖sample);

end
Algorithm 1: Pseudo-code for the innermost PATMOS loop.

Figure 21: A schematic representation of the Monte Carlo particle-transport algorithm. Lines repre-
sent particle flights, stars represent collisions.
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Algorithm 1 describes, through a pseudo-code, the structure of the innermost Monte Carlo loop in
PATMOS. Particle transport is simulated by sampling flights and collisions from suitable probability
distributions (see Figure 21). The parallelization of this algorithm is relatively straightforward since the
iterations of the outermost loop are easily decoupled. Each iteration in fact represents an independent
Monte Carlo sample. Parallelization of this loop requires the following (standard) actions to be
taken:

1. The pseudo-random number generators need to be seeded in such a way that they may be
considered independent.

2. The scores accumulated by different parallel units need to be reduced at the end of the
simulation by taking their statistical averages.

With these provisos, PATMOS can be efficiently parallelized across multiple MPI ranks (in order to
exploit multiple compute nodes) and OpenMP threads.

In large depletion calculations, the amount of memory required for each copy of the scores is very
large (up to 1 TB). For this reason, it is typical to maximize sharing and minimize the memory footprint
by running only one MPI process on each compute node. Concurrent score updates from different
threads are synchronized using atomic operations.

7.2.1 Programming languages

PATMOS is written in C++14 and exposes a set of Python bindings (through pybind11).

7.2.2 Libraries and other dependencies

PATMOS can be coupled to external solvers for depletion calculations.

7.2.3 Parallelization

As detailed in the previous section, PATMOS is based on MPI and OpenMP parallel programming
models to exploit the parallelism available in the outermost loop of Algorithm 1. Because of the
update of scores, communication patterns rely on reduction operations in MPI.

Accelerators

Currently, PATMOS does not support accelerators.
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Figure 22: Illustration of PATMOS typical use case.

7.2.4 Typical use case

The PATMOS typical use case follows the steps described in Algorithm 1 and is illustrated in Figure 22.
Each MPI rank processes a set of samples that are further updated through OpenMP parallel regions.
Thus, each line of the figure represents one MPI process, starting with a broadcast operation to
distribute the required input data. Then each rank applies one iteration of the outermost loop from
Algorithm 1. At the end a collective operation is performed to reduce all scores and to broadcast the
main result to every MPI rank.

Figure 23: Illustration of PATMOS target use case.

7.2.5 Target use case

The target use case models the irradiation cycle of a full nuclear reactor core. This kind of simulation
requires several hundreds of thousands of cores. As shown in Figure 23, the structure of the target
use case is an intercalation of transport loops (as presented in the Typical Use Case in Figure 22)
and calls to an external depletion solver, represented by the gears in the diagram. The depletion
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solver takes the scores computed by the transport step as input, and outputs material compositions
for the following transport step. This use case could be a candidate to exploit an exascale system.

7.2.6 Application requirements

This section details some information about the PATMOS typical use case and target use case
described above.

Scaling

Figure 24: PATMOS MPI Weak Scaling

Figure 24 depicts the execution time of typical use case with increasing number of MPI ranks in
a weak scaling manner. This experiment was conducted on one node of dual-socket 8-core Intel
Sandy Bridge processors. The amount of work is increased as the number of MPI ranks is getting
larger. With a perfect parallel efficiency, the execution time should remain the same. Because the
MPI communication pattern is pretty simple in the typical use case, the overall parallel efficiency is
good. However, the efficiency on the target use case is expected to be lower because of intermediate
communications within each replica.

Figure 25 highlights the OpenMP efficiency through a weak scaling study on the same compute node
with increasing amount of work, leading to weak scaling runs. Because the time to process each
particle could vary and could lead to creation of new batches of particles, the OpenMP parallelism is
not well balanced. This phenomenon has an impact on the parallel efficiency illustrated on the figure
through an increase in the execution time.

Compute

The main computational part of PATMOS is illustrated in Algorithm 1. The ComputeCrossSection
function can be implemented with different methods. One possibility is through table lookup, leading
to large memory storage. The other approach relies on computational kernel called Sigma1 that
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Figure 25: PATMOS OpenMP Weak Scaling

re-calculates cross section information. This kernel can be a good candidate to evaluate GPU
offloading, even if this would require some refactoring of the overall algorithm to enable computing
cross sections on batches of particles.

Memory

The typical use case requires about 1 GB of memory while the target use case may consume up to
1 TB of memory.

IO

Regarding input files, PATMOS stores cross sections into serialized C++ objects through a header-
only library called cereal. For output information, the code prints ASCII outputs (which is reliable
when the output is small). For the target use case, the main goal is to rely on an external standard
library. This work will be realized outside of the DEEP-SEA project, but its outcome will be available
for use with the target use case within the timeframe of the project.

Malleability and resilience

PATMOS has no restriction on the number of resources to exploit and the distribution among MPI
processes and OpenMP threads. This has to be set when launching the code and cannot be
dynamically modified during the execution of the application. Furthermore, there are no specific
developments for fault tolerance nor snapshots. Because the main algorithm is based on Monte Carlo
approach, it can automatically adapt to external failures (assuming the underlying software stack is
able to handle this failure).
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8 Earth System Modelling: TSMP

8.1 Introduction

The Simulation and Data Lab Terrestrial Systems (SDLTS) is a research and support unit at the Jülich
Supercomputing Centre (JSC). SDLTS acts as a contact point for the Terrestrial System research
community to HPC, and in particular to the resources and expertise at JSC. SDLTS further links
other regional partners working at the interface between geosciences and HPC. One of the key
responsibilities of SDLTS is the maintenance of the Terrestrial System Modelling Platform (TSMP),
and supporting its user and developer community.

Terrestrial Systems are conceptualised as a subset of the Earth System integrating interactions and
feedbacks among processes occurring on the land surface, the subsurface and the lower atmosphere.
Processes in these Earth System compartments are typically non-linear and span a large range of
spatial and temporal scales. Moreover, the physical processes typically controlled by small scale
variability tend to manifest in emergent behaviour in larger scales. This multiscale nature implies
that it is complex and difficult to predict how the emergent behaviours arise from a multitude of small
scale interactions. Consequently, physics-based representations of single processes, which are
well-understood at small scales are key to develop an integrated understanding of Terrestrial Systems.
In the context of Earth System Science, the modelling of Terrestrial Systems is key to assess the
effects of environmental change on the soil-vegetation-atmosphere continuum, and the effects of
land-use changes on regional climate.

Physics-based modelling of Terrestrial Systems poses significant computational challenges. Firstly,
it is an intrinsically multi-physics problem, with various and very different domains (porous media,
land surface, atmosphere). Fluxes in these domains are described by systems of partial differential
equations of different nature and thus requiring different numerical and computational solutions.
Additionally, the spatial scales range from the process scales and the scales of heterogeneity (of land
use, soils, and topography) in the orders of meters, all the way to continental scales in the order of
thousands of kilometres. The temporal scales range again from the process scales in the orders of
seconds to climate and ecological time scales of decades and centuries.

Spanning such a diverse computational problem requires smart modelling techniques, robust and
efficient numerical solutions, and reliable, efficient, and scalable computational implementations.
This requires a strong community effort, and indeed, several community models targeting each of
the components of interest for Terrestrial System modelling. The Terrestrial Systems Modelling
Platform (TSMP) leverages on a set of existing community models to provide an integrated modelling
platform, which allows to couple the subsurface, land and lower atmosphere domains through
well-defined physically based models, while ensuring HPC applicability and software sustainability.

Many challenges still exist and are arising in regional Earth System modelling and Terrestrial Systems
modelling. There is a strong need to increase model resolution to enable convection-permitting scales
in atmospheric models, to better resolve spatial heterogeneities on the land surface and subsurface
and to capture key topographical features such as streams. Additionally, further physics are likely to
enter in these models, attending to fundamental needs (such as addressing biogeochemical cycles)
and those arising from resolving smaller scales. Moreover, there is a push of enabling global scale
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terrestrial system simulations. Finally, the inherent uncertainties in modelling Terrestrial Systems
requires to run ensembles. All these aspects together constitute a strong pressure to take Earth and
Terrestrial System models to exascale capabilities.

8.2 Terrestrial System Modelling Platform

The Terrestrial Systems Modelling Platform (TSMP) is a fully coupled, scale consistent, highly modular
and massively parallel regional Earth System Model. TSMP (v1.2.3) is a model interface which
couples three core model components: the COSMO (v5.01) model for atmospheric simulations,
the CLM (v3.5) land surface model and the ParFlow (v3.7) hydrological model. Coupling is done
through the OASIS3-MCT coupler. TSMP is also enabled for Data Assimilation (DA) throughParallel
Data Assimilation Framework (PDAF). TSMP allows to simulate complex interactions and feedbacks
between the different compartments of terrestrial systems. Specifically, it enables the simulation of
mass, energy and momentum fluxes and exchanges across land surface, subsurface and atmosphere
[10]. TSMP is maintained by SDLTS (JSC), and is an open source software publicly available in
GitHub 1.

The coupling design is inherently modular, allowing to build all combinations of component models, or
only build one of them. This design also leads to a Multiple-Program Multiple-Data (MPMD) execution
model and operational flexibility, allowing the different model components to run at different spatial
and temporal resolutions. In fact, within TSMP different versions of the component models are
supported for both legacy and experimental purposes.

TSMP is undergoing significant developments, which are not part of DEEP-SEA but are ocurring in
parallel and will be deployed during the lifetime of DEEP-SEA. Experimental development branches
include the coupling of the ICON atmospheric model and the upgrade from CLM3.5 to CLM5. These
implementations are at different stages of development but are expected to become operational within
a year. Consequently, they will interact with co-development efforts in DEEP-SEA.

The component models—developed by third parties—are written using different programming lan-
guages, use different parallelization and acceleration schemes (can exploit different hardware), and
show different scaling behaviour. The diversity in features and responses is partly what motivates the
modular design of TSMP.

TSMP is mostly a compute-driven application. The core computational effort comes from solving large
sets of partial differential equations. The computational requirements are higher for COSMO/ICON
and ParFlow, and considerably lower for CLM. Additionally DA ensemble runs are somewhat data-
driven, as observational data needs to be assimilated into the workflows.

The core TSMP workflow is illustrated in Figure 26. The core component models are initialised,
and all three component models are run concurrently. The different complexities and numerical
approximations result in different runtimes to a particular time level. In particular CLM will typically
finish first. Once the two other components run until the desired time level, information is exchanged
from COSMO/ICON and ParFlow into CLM, which can start advancing again, and then exchange the
information back again, followed by triggering the other two component models to continue marching
forward. This process is repeated throughout the simulation.

1https://github.com/HPSCTerrSys/TSMP
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Figure 26: Computational workflow within TSMP. Adapted from [2].

Preprocessing workflows are necessary to setup initial conditions (initialization), and to prepare
boundary forcing data (in particular for the atmospheric component) which will be used throughout the
simulation. Postprocessing workflows are used for different types of visualization, analytics, etc. Data
Assimilation workflows are also frequent with TSMP. DA workflows (see Figure 27) rely on ensembles
of concurrent runs as the one illustrated in Figure 26 and are discussed further as a parallelization
feature in Section 8.2.3.

8.2.1 Programming languages

TSMP can be conceptualised as a two-part system: an interface between the different components
models and a build workflow which creates a common environment, patches component model
source codes and compiles the model system.

The interface itself is constructed mostly over the OASIS3-MCT coupler which is written in Fortran90.
The build workflow relies on shell (kash), Tcl and Perl. TSMP’s coupling and wrapper codes files
match the component models: Fortran (COSMO, CLM3.5, PDAF) and C (ParFlow). The expected
new components of TSMP (ICON and CLM5) are also written in Fortran.

8.2.2 Libraries and other dependencies

The dependencies for TSMP are mostly those required by the component models. These include
curl, GRIBAPI HDF5, HYPRE, BLAS/LAPACK, eccodes, NetCDF, Silo, zlib.

Visualization is not supported within TSMP, but its output follows the NetCDF standard and can
therefore be visualised through ncview and Paraview, or using Python and R.

8.2.3 Parallelization

TSMP has different levels of parallelization, illustrated in Figure 27. TSMP strongly relies on point-
to-point MPI communicators managed through OASIS, coupling the component models. These
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communicators are also used within the component models to deal with domain decomposition.
Collective communicators are also used within component models for selected operations.

The first level of parallelism is a consequence of the MPMD execution model of TSMP, where the
three component models (COSMO/ICON, ParFlow, CLM) run concurrently on different computational
resources (compute nodes). The global communication space is provided by TSMP via OASIS3-MCT,
leveraging on MPI (MPI_COMM_WORLD). The distribution of these resources is typically done based
on experience and is known to potentially strongly impact performance. For the typical use case
(see Section 8.2.4) the resource distribution among components is well established from empirical
experience.
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Figure 27: TSMP parallelization levels with a Data Assimilation workflow, and a heterogeneous
computing configuration.

Within a model component, the second level of parallelism is implemented via MPI for all component
models (COSMO/ICON, CLM, ParFlow). Intra-node parallelism also relies (in the default configuration)
on MPI. Node-level multiGPU ParFlow execution is enabled through MPI.

A third level of parallelism is enabled in ParFlow and ICON (experimental in TSMP) via OpenMP, and
through GPU accelerators (see details in Section 8.2.3).

Additionally, workflows using ensembles for DA allow one higher level of parallelism. Ensembles
consist of a set of independent members (or realizations), all of which have the same problem size and
computational resources. They are effectively repetitions of the same base computational problem.
These ensemble members are independent and can be run concurrently. Once all realizations
are finished, information is collected from all of them by PDAF. Together with observational data,
PDAF then constructs DA operators and creates new configurations for a new ensemble, which
launches a new set of concurrent runs. This process is repeated until the Data Assimilation process
is completed. The process-blocking reduction of ensemble runs into PDAF is a potential bottleneck.
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Empirical observations show that a few ensemble members may have significantly longer runtimes
than the average of the ensemble. This is unavoidable, since the simulation setup (parameters, initial
conditions, forcing, etc.) of each member has a stochastic nature, and it is difficult to predict if an
excessive runtime will be required.

Accelerators

ParFlow v3.7 is the only component model in TSMP which is ported into CUDA for NVIDIA GPU
acceleration [4]. The next version of ParFlow (v3.8, not yet supported in TSMP) also enables Kokkos
for acceleration. ICON (which remains experimental in TSMP) also provides GPU support. ICON
(currently experimental within TSMP) also has an OpenACC backend for accelerator portability.

8.2.4 Typical use case

TSMP’s typical use case is the so-called EUR11-CORDEX problem. This case simulates mass,
energy and momentum fluxes across land surface, subsurface and atmosphere in a continental scale
pan-European domain, conforming to the specifications of the EUR-11 model grid, as defined by the
World Climate Research Program’s Coordinated Regional Downscaling Experiment (CORDEX) [5].
This domain is roughly 5450×5300 km in extension, and includes Europe (and parts of northern Africa,
and western Russia and Asia). It is discretized with a resolution of 0.11∘ (approximately 12.5km),
resulting in a horizontal grid of 436 × 424 = 184864 elements. Each of the component models
requires different vertical resolutions. ParFlow is discretized with 15 vertical elements(∼ 2.8× 106

total elements), CLM with 10 (∼ 1.9× 106 total elements) and COSMO with 50 (∼ 9.2× 106 total
elements) [6, 7]. Parametrization, initial conditions and forcing for this typical use case are well
established and publicly available. They can be retrieved with automated scripts available at TSMP’s
GitHub. The duration of the simulation depends on its intended use, which may range for a few hours
(typically for scaling and benchmarking studies) to months and years (for forecasting), and to decades
(for reanalysis). A short simulation configuration is available together with TSMP, for a 12-hour long
simulation.

8.2.5 Target use case

The next generation of simulations of continental scale water cycle and land-atmosphere interactions
will require a significant increase in spatial resolution, to achieve convection-permitting scales, ideally
with resolutions approaching the km-scale. This will lead to improved simulation of, for example,
local precipitation [1] which in turn affects water redistribution on and below the surface. Additionally,
higher spatial resolutions will better resolve dynamics induced by different land uses, soil types and
topography on both hydrodynamics and atmosphere dynamics. Experimental setups exist for sub-
continental regional simulations [9], and in the near future the push is to take convection-permitting
resolutions to continental domains [3].

Consequently, the European CORDEX domain will be re-discretized to a resolution of 0.0275∘

(approximately 3× 3 km), which implies 1600× 1552 = 2435200 horizontal grid points. This new case
is called pEU3km and will maintain the vertical discretization of the EUR-11 CORDEX case (Section
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8.2.4). This translates into a computational problem roughly 13.2× larger than the EUR-11 CORDEX
case. Additionally, increased sharp gradients in topography may affect the stability and convergence
rates of non-linear solvers in TSMP’s component models, making it hard to predict a-priori what will
be the increase in computational cost. Scaling the computational problem is not a matter only of
increasing the spatial grid resolution, but the entire parametrization and forcing of the system needs
to be downscaled. This is an ongoing project with partners at the Institute of Bio- and Geosciences:
Agrosphere (IBG-3/FZJ), which is still being configured and experimented with [3, 8], and which will
be made available for DEEP-SEA as the target use case.

8.2.6 Application requirements

Scaling

Detailed weak scaling studies [2] have been performed in the past in systems which are now
decommissioned (JUQUEEN, IBM Blue Gene/Q system). This study showed that CLM had a 98%
parallel efficiency, with near-zero communication overhead. COSMO (v4.11) showed a 92% parallel
efficiency, and the higher computational load, thus governing runtime. ParFlow (v3.1) showed a lower
efficiency of 82%. Although this serves as a rough guideline, the current version of TSMP implements
more recent versions of the component models, notably including a GPU-accelerated ParFlow, for
which dedicated studies exist [4] showing excellent scaling. A detailed scaling study for the current
version of TSMP (and its components) needs to be retaken, also considering current hardware, and
in particular under heterogeneous configurations. This will be carried out within DEEP-SEA.

Non-exhaustive scaling studies of TSMP are periodically run on JSC systems with a short duration
run of the typical EUR11-CORDEX problem, mainly serving for compute-cost estimations. Figure 28
shows the latest strong scaling results in JUWELS.

It is quite clear the main sources of scaling inefficiencies in TSMP come from load imbalancing and
idle times of computational resources. As illustrated in Figure 26, the CLM resources are idle for large
times, and these resources are not used. Additional idle times can occur between COSMO/ICON
and ParFlow, although in a significantly lower magnitude.

No scaling studies are available yet for the target use case pEU3km. Experimental runs with singular
components (CLM or ParFlow) have been carried out in the JURECA system [8] without performance
studies.

Compute

A typical setup of computational resources for the EUR-11 CORDEX case in JUWELS (JSC) is
as follows. COSMO requires 384 MPI processes, ParFlow 144 MPI processes and CLM 48 MPI
processes. In terms of compute nodes in JUWELS, this setup requires 12 nodes, with an allocation
of 8 for COSMO, 3 for ParFlow nodes and 1 for CLM. Standard requirements for running this case
under a heterogeneous setup, with ParFlow GPU are under investigation. Recent jobs in JUWELS
show average inter-node data transfer rates in the order of 1 GB/s, and peaking at 7 GB/s.
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JUWELS Cluster: CPU Xeon Platinum 8168, 48 cores @ 2.7 GHz

Decomposition: ParFlow 12x12, CLM 6x8, COSMO (6−24)x(6−24)

TSMP v1.2.3 (ParFlow 3.2, CLM 3.5, COSMO 5.1)
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Figure 28: Strong scaling of TSMP in JUWELS, for the EURO CORDEX case.

The required computational resources for the target case are yet to be determined. A blunt extrapo-
lation from the current setup is likely to be inaccurate since the change in resolution also produces
changes in non-linearities in the system. This affects numerical stability and convergence, potentially
increasing computational effort non-linearly.

Memory

The memory requirements per node depend on which component model is being executed in a given
node, and of course on the allocated computational resources. For the typical EUR-11 CORDEX
with the resource detailed in Section 8.2.6, the total memory used is 295 GB, and the average node
memory use is approximately 25 GB, peaking nearly at 30 GB.

For the target test case there is no measured memory footprint. Total memory can be expected to
increase proportional to the increase in the number of elements, resulting in a total footprint of 3894
GB. For a rough comparison, with the current available memory in JUWELS nodes this target test
case would require around 41 standard nodes (or 21 large memory nodes), considering only memory
limitations.

IO

IO is not controlled by TSMP itself, but rather its component models. The key dependency for IO
is the NetCDF library. Model initialization requires a set of files for each model component, from
namelists (a few MBs) to NetCDF files (in the order of 100 MBs). Boundary forcing data is in the form

DEEP-SEA - 955606 61 31.07.2021



D1.1 Initial application co-design input

of NetCDF files, usually obtained from global atmospheric simulations, downscaled, and interpolated
into the typical EUR-11 domain. Boundary data volumes depend on the frequency at which forcing is
imposed on the model. Approximately 3 GB of input data are required per hour of model time. All
component models support the NetCDF standard for output. COSMO additionally supports GRIB
and ParFlow also supports a native, non-standard binary output format. In practice, mostly NetCDF
files are used in TSMP jobs. Total output volumes depend on the output frequency. For the typical
case, a run would require approximately 15 GB per model day (with hourly COSMO and CLM output,
and daily ParFlow output). During runs in JUWELS of the typical EUR-11 case show IO rates peaking
at ∼ 850 MB/s, for both read and write.

For the target use case the output would increase roughly to 198 GB per model day if the same
frequency is kept. However, higher output frequencies may become relevant in such problem.

Malleability and resilience

TSMP has been successfully ported to all operating JSC HPC systems (JUWELS, JURECA, JUSUF)
and the experimental DEEP-EST system. Additionally, it has also been ported to other Tier-1 and
Tier 2 HPC systems hosted by other institutions. An automated workflow is also available to port
TSMP to generic x86 machines.

TSMP runs can be executed with ad-hoc resource allocations depending on availability, although
designing the resource distribution for optimal performance is non-trivial, system-dependent, and
case-dependent. TSMP does not currently allow a dynamic reallocation of computational resources.
In theory the MPMD model would allow for a good degree of malleability. Moreover, malleability would
be especially desirable for Data Assimilation ensemble runs, in which resources from fast ensemble
members are then transferred to slower members.

TSMP can be viewed as fault tolerant, insofar any snapshot written to disk (normal simulation output)
can be used to restart a simulation. This mechanism is commonly used in TSMP jobs at JSC for very
long simulations broken into shorter jobs which comply with the maximum job time policies.
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9 Summary

This deliverable describes the co-design applications and their requirements. The applications cover
a wide range of scientific fields, programming languages, and parallelization strategies. They include
pure MPI applications, MPI+X and global address space (GASPI) approaches. They take advantage
of accelerators using pragma-based as well as language-based programming models. Some focus on
point-to-point communication, but most make use of collective MPI calls. Several of the applications
can generate large data sets and one even has dedicated IO ranks. Many focus on computational
aspect, but at least two applications rely on large input sets and at least one uses machine learning
techniques both to improve the calculations and interpret the results. Together these applications
provide a cross section of HPC codes used on European supercomputers and an excellent testing
ground for the programming models, tools, and API developed in the other work packages of the
DEEP-SEA project
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List of Acronyms and Abbreviations

A
AIDA Artificial Intelligence and Data Analysis. H2020 project.

AIDApy Python package for the analysis of space data developed by the AIDA
project.

API Application Programming Interface

B
BN Booster Node (functional entity)

BoP Board of Partners for the DEEP EST project

BSC Barcelona Supercomputing Centre, Spain

C
CLM Community Land Model

CM Cluster Module: with its Cluster Nodes (CN) containing high-end
general-purpose processors and a relatively large amount of mem-
ory per core

CN Cluster Node (functional entity)

CORDEX Coordinated Regional Climate Downscaling Experiment

COSMO Atmospheric model - Consortium for Small-scale Modeling

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

D
DAM Data Analytics Module: with nodes (DN) based on general-purpose

processors, a huge amount of (non-volatile) memory per core, and
support for the specific requirements of data-intensive applications

DEEP Dynamical Exascale Entry Platform (project FP7-ICT-287530)

DEEP-ER DEEP – Extended Reach (project FP7-ICT-610476)

DEEP/-ER Term used to refer jointly to the DEEP and DEEP-ER projects

DEEP-EST DEEP – Extreme Scale Technologies

DEEP-SEA - 955606 64 31.07.2021



D1.1 Initial application co-design input

DN Nodes of the DAM

E
EC European Commission

ESB Extreme Scale Booster: with highly energy-efficient many-core proces-
sors as Booster Nodes (BN), but a reduced amount of memory per
core at high bandwidth

EU European Union

Exascale Computer systems or Applications, which are able to run with a perfor-
mance above 1018 Floating point operations per second

F
FFT Fast Fourier Transform

FHG-ITWM Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschungs
e.V., Germany

Flop/s Floating point Operation per second

FP7 European Commission 7th Framework Programme

FPGA Field-Programmable Gate Array, Integrated circuit to be configured by
the customer or designer after manufacturing

G
GPU Graphics Processing Unit

GROMACS A toolbox for molecular dynamics calculations providing a rich set of
calculation types, preparation and analysis tools

H
H2020 Horizon 2020

HPC High Performance Computing

HPDA High Performance Data Analytics

HW Hardware
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I
ICON Icosahedral Nonhydrostatic Weather and Climate Model

Intel Intel Germany GmbH, Feldkirchen, Germany

IO Input/Output. May describe the respective logical function of a com-
puter system or a certain physical instantiation

J
JURECA JURECA (Jülich Research on Exascale Cluster Architectures) Super-

computer at FZJ

JUWELS JUWELS (Jülich Wizard for European Leadership Science) Supercom-
puter at FZJ

K
KNL Knights Landing, second generation of Intel® Xeon Phi (TM)

KU Leuven Katholieke Universiteit Leuven, Belgium

L
LLNL Lawrence Livermore National Laboratory

M
MoU Memorandum of Understanding

MPI Message Passing Interface, API specification typically used in parallel
programs that allows processes to communicate with one another by
sending and receiving messages

MPMD Multiple-Program-Multiple-Data

MSA Modular Supercomputer Architecture

N
NUMA Non-Uniform Memory Access

DEEP-SEA - 955606 66 31.07.2021



D1.1 Initial application co-design input

O
OmpSs BSC’s Superscalar (Ss) for OpenMP

OpenCL Open Computing Language, framework for writing programs that exe-
cute across heterogeneous platforms

OpenMP Open Multi-Processing, Application programming interface that support
multi-platform shared memory multiprocessing

P
ParFlow Hydrological model

PDAF Parallel Data Assimilation Framework

Phi see Xeon Phi

PIC Particle-in-Cell algorithm.

PME Particle mesh Ewald

PMT Project Management Team of the DEEP-EST project

Q

R
RAM Random-Access Memory

S
SCR Scalable Checkpoint/Restart. A library from LLNL

SIMD Single Instruction Multiple Data

SIONlib Parallel I/O library developed by Forschungszentrum Jülich

SW Software

T
Tk Task, Followed by a number, term to designate a Task inside a Work

Package of the DEEP-EST project
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TSMP Terrestrial System Modelling Platform

U

V

W
WP Work package

X
x86 Family of instruction set architectures based on the Intel 8086 CPU

Xeon Non-consumer brand of the Intel® x86 microprocessors (TM)

Xeon Phi Brand name of the Intel® x86 manycore processors (TM)

xPic eXascale ready Particle-in-Cell code for space plasma physics.

Y

Z
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