
EuroHPC-01-2019

DEEP-SEA

DEEP – Software for Exascale Architectures
Grant Agreement Number: 955606

D1.3
Applications use of DEEP-SEA software stack

Final

Version: 1.0

Author(s): U. Sinha (FZJ), M.E. Holicki (FZJ)

Contributor(s): J. Amaya (KULeuven), M.I. Andersson (KTH), D. Caviedes Voullieme (FZJ),
G. Tashakor (FZJ), P. Carribault (CEA), D. Grünewald (FhG), N. Jansson (KTH),
M. Karp (KTH), D. Mancusi (CEA), S. Markidis (KTH), O. Marsden (ECMWF),
J. de la Puente (BSC), J.E. Rodriguez (BSC), O. Castillo-Reyes (BSC))

Date: 31.03.2022

Ref. Ares(2022)2416910 - 31/03/2022

D1.3 Applications use of DEEP-SEA software stack

Project and Deliverable Information Sheet

DEEP-SEA Project ref. No.: 955606

Project Project Title: DEEP – Software for Exascale Architectures

Project Web Site: https://www.deep-projects.eu/

Deliverable ID: D1.3

Deliverable Nature: Report

Deliverable Level: Contractual Date of Delivery:
PU* 31.03.2022

Actual Date of Delivery:
TBD

EC Project Officer: Daniel Opalka

*− The dissemination levels are indicated as follows: PU - Public, PP - Restricted to other participants
(including the Commissions Services), RE - Restricted to a group specified by the consortium (including the
Commission Services), CO - Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Title: Applications use of DEEP-SEA software stack

Document ID: D1.3

Version: 1.0 Status: Final

Available at: https://www.deep-projects.eu/
Software Tool: LATEX

File(s): DEEP-SEA_D1.3_Applications_use_of_DEEP-SEA_software_ stack.pdf

Written by: U. Sinha (FZJ), M.E. Holicki (FZJ)

Authorship Contributors: J. Amaya (KULeuven), M.I. Andersson (KTH),
D. Caviedes Voullieme (FZJ), G. Tashakor (FZJ),
P. Carribault (CEA), D. Grünewald (FhG),
N. Jansson (KTH), M. Karp (KTH),
D. Mancusi (CEA), S. Markidis (KTH),
O. Marsden (ECMWF), J. de la Puente (BSC),
J.E. Rodriguez (BSC), O. Castillo-Reyes (BSC))

Reviewed by: Stefano Markidis (KTH)

Jennifer Lopez Barrilao (ParTec)

Approved by: BoP/PMT

DEEP-SEA - 955606 1 31.03.2022

https://www.deep-projects.eu/
https://www.deep-projects.eu/

D1.3 Applications use of DEEP-SEA software stack

Document Status Sheet

Version Date Status Comments

1.0 31.03.2022 Final Version EC Submission

DEEP-SEA - 955606 2 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Document Keywords

Keywords: DEEP-SEA, HPC, Exascale, Software, Applications, Benchmarks,
Co-design

Copyright notice:

© 2021 - 2022 DEEP-SEA Consortium Partners. All rights reserved. This document is a project
document of the DEEP-SEA Project. All contents are reserved by default and may not be
disclosed to third parties without written consent of the DEEP-SEA partners, except as mandated
by the European Commission contract 955606 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowl-
edged as own by the respective holders.

DEEP-SEA - 955606 3 31.03.2022

Acknowledgements:

The DEEP Projects have received funding from the European Commission’s FP7, H2020,
and EuroHPC Programmes, under Grant Agreements n° 287530, 610476, 754304, and
955606. The EuroHPC Joint Undertaking (JU) receives support from the European Union’s
Horizon 2020 research and innovation programme and Germany, France, Spain, Greece,
Belgium, Sweden, United Kingdom, Switzerland.

D1.3 Applications use of DEEP-SEA software stack

Contents

Project and Deliverable Information Sheet 1

Document Control Sheet 1

Document Status Sheet 2

List of Tables 6

Executive Summary 7

1. Introduction 8

2. Space Weather 9
2.1. Introduction . 9
2.2. Tools, software components and programming models 9
2.3. Collaborations . 12
2.4. Co-design input . 14
2.5. Conclusion . 15

3. The IFS weather forecasting software 16
3.1. Introduction . 16
3.2. Tools, software components and programming models 16
3.3. Collaborations . 18
3.4. Co-design input . 18
3.5. Conclusion . 18

4. Seismic imaging 19
4.1. Introduction . 19
4.2. Tools, SW Components & programming models . 19
4.3. Collaborations . 20
4.4. Co-design input . 21
4.5. Conclusion . 21

5. GROMACS: Molecular Dynamics 22
5.1. Introduction . 22
5.2. Tools, SW Components and programming models 22
5.3. Collaborations . 24
5.4. Co-design input . 24
5.5. Conclusions . 24

6. Computational Fluid Dynamics: Nek 25
6.1. Tools, software components and programming models 25
6.2. Collaboration . 27
6.3. Co-design input . 27
6.4. Conclusion . 27

DEEP-SEA - 955606 4 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

7. Neutron Monte-Carlo Transport for Nuclear Energy 28
7.1. Introduction . 28
7.2. Tools, software components and programming models 28
7.3. Collaborations . 30
7.4. Co-design input . 31
7.5. Conclusion . 31

8. Earth System Modelling: TSMP 32
8.1. Introduction . 32
8.2. Tools, software components and programming models 32
8.3. Collaborations . 35
8.4. Co-design input . 36
8.5. Conclusion . 37

9. Summary 38

Appendices 39
A.1. Inter-workpackage and cross-SEA collaboration . 40
B.2. Optimisation cycles . 41

List of Acronyms and Abbreviations 43

Bibliography 51

DEEP-SEA - 955606 5 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

List of Tables

1. Collaboration between WP1 tasks and other DEEP-SEA work packages. 40
2. Cross-SEA collaboration of WP1 with IO-SEA and RED-SEA. 41
3. Optimisation Cycles: Expressions of Interest. 42

DEEP-SEA - 955606 6 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Executive Summary

The applications from work package 1 (WP1, Co-Design Applications) provide use cases and
requirements as co-design input to the other work packages. They demonstrate the capabilities of the
DEEP-SEA software stack and evaluate its performance and usability for a wide range of scientific
applications from molecular dynamics to space weather. The results feed back into the development
cycle of the project in close collaboration with all work packages. To cover as many aspects of the
software stack as possible WP1 also maintains a set of additional benchmarks.

This Deliverable focuses on identifying the programming paradigms and tools suited for each of the
applications and describes the areas where they are providing their co-design input to the developers.
It provides a detailed description of the topics on which these applications are collaborating with the
other work packages of the DEEP-SEA project and their current status regarding each optimisation
cycle mentioned in the Deliverable D3.1 [1].

DEEP-SEA - 955606 7 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

1. Introduction

The previous Deliverables [2, 3] reported the application requirements in terms of libraries, hardware,
and software in addition to their integration with the Jülich benchmarking environment (JUBE) [4] and
instrumentation with performance analysis tools like Score-P, Extrae, Paraver, and Scalasca [5, 6,
7, 8]. At the moment, all these applications have been successfully ported into the DEEP system
and are working to explore the Modular Supercomputer Architecture (MSA). The integration with
JUBE has enabled them to perform automated benchmarking tests and facilitate easy reproducibility.
Furthermore, the applications have successfully generated traces for their typical use-cases that has
helped them to identify the performance bottlenecks and explore the regions that have potential for
improvements.

In this Deliverable, each task presents the tools, software components, and programming models for
their applications. Furthermore, a detailed description of their inter-work package and cross-SEA
collaboration is presented. The tasks have identified the programming paradigms and tools from
WP2-5 for their applications and are working together to adapt them to the MSA. These tasks are
actively interacting on a variety of topics with all the DEEP-SEA work packages, the IO-SEA project,
and the RED-SEA project to improve their applications and are providing their input for the co-design
process.

DEEP-SEA - 955606 8 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

2. Space Weather

2.1. Introduction

Space weather and its implications on society and technology has been discussed in detail in the
Deliverable D1.2 [3]. The particle-in-cell code xPic, developed at KU Leuven, studies the effect
of solar plasma on the planets of our solar system. We employ Data-Analysis (DA) and Machine
Learning (ML) techniques to determine the initial and boundary conditions of the simulation and
analyse the generated data. This simulation framework has been successfully run using the MSA on
the DEEP system at Jülich Supercomputing Centre (JSC).

KU Leuven is also developing ML tools to analyse spacecraft and simulation data. The type of data
generally encountered in these problems include time-series, remote images by solar telescopes,
and multi-dimensional arrays captured by spacecraft instruments and by particle simulations. One
example of the ML applications used in this project is concerned with the analysis of solar active
regions. Among the different tools in the AIDApy package we have included algorithms to characterize
solar active regions, i.e. zones of increased magnetic activity on the sun that can suddenly eject
mass and radiation dangerous to our planet. Being capable of characterizing active regions, these
can be used to classify the type of active region, and their level of risk. Our long term plan is then to
use this automatic characterization to forecast solar energetic eruptions by following the evolution of
the characteristic features over time.

We are constantly adding new Artificial Intelligence (AI) and ML tools to the AIDApy package. In
addition to the use of ML for the study of solar active regions described in the previous paragraph,
during the DEEP-SEA project we will also implement a second algorithm that analyses the very large
amounts of data produced by the particle solver of the code xPic. We are using the Gaussian Mixture
Model (GMM) to classify plasma regions of different characteristics in different zones simulated by the
code xPic. Large exascale simulations of space plasmas can produce more than one TiB of particle
information. This data cannot be stored and analysed after the execution of the code, it needs to be
processed on-the-fly. We have developed an algorithm that transfers data from the particle solver of
xPic to the GMM algorithm of the AIDApy package. This model is then executed in a Data Analytics
Module.

2.2. Tools, software components and programming models

2.2.1. Application xPic

A detailed description of the code xPic and its internal components has been presented in Deliverables
D1.1 [2] and D1.2 [3]. In this section, we describe the processor architectures and operating systems
that xPic is compatible with and its requirements in terms of software libraries and compilers. In
addition, the tools used for the performance analysis and optimisation of xPic are also described.

xPic has been developed under the DEEP projects and hence the programming models employed
during the course of its development has been according to the selected processor architectures.

DEEP-SEA - 955606 9 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Initially, it was designed to run on a cluster-booster architecture where the booster module was made
up of Intel Xeon Phi accelerators. Later, during the DEEP-EST project, a more generic approach was
adopted to be able to run on boosters comprising of Nvidia GPUs. More recently, work has been
done to make xPic compatible with the new generation of AMD processors and accelerators. These
developments are inline with our goal to enable xPic to run on a variety of architectures.

One of our main goals has been to develop a code that can be ported to any general purpouse
architecture. We understand that this can come with drawbacks, e.g. performance can be slightly
compromised by the use of non-specific hardware operations. KU Leuven has decided to sacrifice a
small part of the performances in exchange of portability.

xPic can be ported in to POSIX systems running on Linux, Unix, and macOS. It has also been ported
to the HPC systems DEEP and JUWELS at JSC. To take advantage of the MSA, xPic creates two
types of files at different intervals: 1) moment files (containing information about the plasma density,
current, electric and magnetic fields, pressure tensors, etc.) with values at the grid points of Cartesian
mesh, and 2) particle files (containing information about the particle position, velocity, and charge).
As the number of particles in the simulation far exceed the number of grid points, the size of particle
files are a few orders in magnitude larger than the moment files. We use the general I/O systems to
obtain our simulation data and in case of check-pointing use the fast local storage.

The libraries required to compile the code are: a) C/C++ compiler that provides support to OpenMP
5.0, b) MPI with multi-threading support, c) HDF5 compiled with support for parallel I/O [9], d) H5hut
(optional high level interface to HDF5) [10], e) PETSc [11]. Additional libraries are used in case of
increased functionality. The code xPic has been equipped with optional interfaces to SIONlib and
SCR for fast parallel I/O and checkpoint/restarting.

In addition to these libraries, we use a set of python scripts to initialise the fields and particles. These
scripts use h5py to write initialisation files in HDF5 format [12]. The initialisation and simulation
data files can be read, analysed, and post-processed using Python scripts. A post-processing tool,
provided with xPic, converts these files in the Xdmf format compatible with Paraview [13] and Visit
[14].

The code performance and bottlenecks are carefully monitored by using a series of clocks to measure
the execution time of the different sections. This data is stored and shared between all processors to
generate a statistical report at the end of each simulation run. Extrae/Paraver [6, 7] and Intel VTune
[15] are used to instrument xPic for performance measurements. Analysis of load balancing and
execution of the code has been done using Extrae/Paraver in collaboration with BSC. The roofline
analysis has been done using Intel VTune. Recently, we have generated profiles and traces to
measure the performance of the GPU part of the code. In addition to these tools, we plan to use
Dimemas [16] and Score-P [5] with the aim to achieve high performance on future architectures.
These developments will support the co-design process through interactions via optimisation cycles.

We have also used Intel VTune to understand the behaviour of our code. We have used this tool in
particular to do roof-line analyses. This is an extremely useful tool that we would like to see available
in other profiling tools. We hope to use during this project the Score-P profiler and other tools for the
analysis of the memory use. We will support the co-design of this software during our interactions in
the optimisation cycles.

There is still room for optimisation of the xPic code. We currently use OpenMP 5.0 to offload
computation to the GPUs. Different algorithmic strategies could improve the efficiency here. We

DEEP-SEA - 955606 10 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

have also worked in the efficiency of communications between MSA modules. Until now we have not
seen strong bottlenecks in the transmission of data, but we will continue our investigations during this
project. We are also making use of GPU direct communications between GPUs [17]. At the moment
we assume that a single node has access to only one GPU, and we connect one MPI process in the
Cluster with one MPI process in the Booster. It would be possible to increase the performances of the
code if one CPU connects to multiple GPUs. Using multiple GPUs can accelerate our computations
and produce faster runtimes, but we can alternatively use the added power to include more particles
in our simulations, thus reducing the inherent noise in PIC simulations, improving the associated
statistics, increase dramatically the accuracy of our code.

2.2.2. Application AIDApy

AIDApy is a group of python modules used to analyse the data provided by spacecrafts and those
obtained from simulations to study the solar activity, forecast solar wind conditions near earth, predict
geomagnetic effects, and study the physics of solar plasmas. These modules employ a combination
of DA, ML, and statistical tools for a rigorous analysis. As we mentioned in the introduction section
2.1 we propose to use two specific cases in the context of the DEEP-SEA project: a) the automatic
parametrization of solar active regions, and b) the characterisation of particle distribution functions
from xPic simulations.

Of these two cases, the first one, the parametrization of solar images, was originally deployed
on a laptop featuring a 1 TiB SSD disk, an Intel Core i9-10885H CPU, and an Nvidia GTX 2070
Max-Q. Before performing any optimisation, we wanted to compare this desktop hardware with the
un-optimized code in the DEEP system. The same code has been ported to the DEEP system, where
we tested the algorithms using the Data Analytics Module (DAM) module. Although the accelerators
installed in the DEEP system are more powerful, the performances of the GPUs were comparable in
both systems. This performance penalty still needs to be investigated and corrected. However, a
more important bottleneck was detected in the reading of large number of images in the ML algorithm
used for this test (a deep convolutional neural network). The test running in the laptop with an SSD,
was showing much better run-times than a single node in the DAM module of the DEEP system. To
solve this issue, in our SLURM scripts we implemented an initial copy of all the files into the local
NVMe drive of the DAM node. For this particular test we are using 140 MiB of data, and the copy
from the login node to the DAM node takes only a few seconds at the beginning of the job. The I/O
bottleneck is then averted by relying on the local disks in the DAM. We caution other users of the
importance of using fast disks for any AI/ML application that requires the reading of large amounts of
data.

The second test case, the analysis of particle distribution functions from xPic, has already been
ported to the DEEP system. It can be executed in two modes: 1) reading particle information from
disk, 2) receiving particle information directly from xPic, during execution, using MPI messages. We
have already deployed and tested scripts for the launch of the xPic+AIDApy/GMM codes using the
three modules of the DEEP system. The test is still under development and will require further refining
and analysis.

The AIDApy tools have been developed in Python and use the PyTorch [18] and Scikit-Learn [19] ML
frameworks. In addition we make use of typical data analytic tools like NumPy, Pandas, Xarrays. We
also use external packages that grant access to data from spacecraft missions stored by the National

DEEP-SEA - 955606 11 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). This data is
freely available to anyone on the online data services of the respective agencies. Basic parallelism is
obtained using mpi4py. On the DEEP system we make use of the pre-compiled PyTorch libraries,
but the remaining packages are installed in a virtual Pip environment. The environment is saved
in a directory that can be accessed by the compute nodes to be activated and give access to the
pre-installed python packages. We are also evaluating the possible use of Singularity containers to
pre-package all the required Python software into a single file. Containerization for the MSA is being
studied in WP3 of the DEEP-SEA project.

For the two different tests described above, the data has two different origins. For the analysis of
particle distributions, the data is generated by the simulation code xPic. Information about billions
of particles from the simulation is traditionally stored in a large files. For the second case, the data
consists of thousands of images of solar patches, each of size 526x256x3, where the third dimension
is the number of channels used, in this case corresponding to three components of the magnetic field
of the surface of the sun. We are planning to extend the dataset for this second case with many more
channels per image, adding information of more wavelengths of the electromagnetic spectrum. This
can multiply the amount of data used for the training of our second test case.

We use internal clock calls to optimise the AI/ML operations, including the use of multi-threading and
GPU processing, in AIDApy. We are working on further improvements by making appropriate use of
the underlying APIs and the transfer and location of the data.

2.3. Collaborations

KU Leuven is actively collaborating with the rest of the consortium by providing access to xPic
and AIDApy. With an aim to improve our understanding of the physics of space plasmas, we are
working towards implementing tools and algorithms that can make use of the upcoming exascale
supercomputers. In addition, we have been developing Python tools to analyse large data generated
by simulations and those provided by spacecrafts. In the following sub-sections, we describe our
collaboration with other work packages of the DEEP-SEA project in detail. KU Leuven provides
source-code access to xPic and to certain Python scripts integrated in the AIDApy codebase.

Our primary goal is to create an HPC software that will help to improve our scientific knowledge of
the physics of space plasmas. This requires the implementation of algorithms and tools that can
be deployed on exascale supercomputers. Our secondary goal is to develop all the Python tools
necessary for the analysis of the large amounts of data generated by exascale simulations and
spacecraft missions.

With these goals in mind we started our work in the DEEP-SEA project by profiling and understanding
the bottlenecks in our codes. We describe in the following subsections how we are working in
collaboration with all the WPs of the project to achieve our project objectives. In each subsection we
also describe which are our requirements, or what are we expecting from other WPs.

The two applications described above, xPic and AIDApy, have been developed with different tools.
While xPic is a C/C++ highly parallel HPC software, AIDApy is a Python-based data-intensive analysis
tool. As such we have the opportunity to collaborate on multiple fronts with different WPs and with
different partners in the DEEP-SEA project.

DEEP-SEA - 955606 12 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

We are collaborating with IO-SEA to take advantage of the latest I/O developments for generation,
reading, and analysis of data and for the training of AI/ML methods in AIDApy. Furthermore, to
benefit from better interconnection technology for parallel efficiency and inter-module communications
in MSA, we are collaborating with RED-SEA. The details of our collaboration with the DEEP-SEA
workpackages is described below:

• WP2: We started our work in this project with the profiling of xPic using the Extrae/Paraver
tools developed by BSC. We have followed different tutorials, but we have also contacted
the developers at BSC directly to better understand the results obtained during our profiling.
We want to continue this collaboration in order to have clearer extrapolations of the future
performances of our code for different exascale supercomputers. We also gave feedback on
the user experience during a one hour meeting with the developers at BSC. We used also
the VTune tools from Intel to do roof-line analysis of xPic. The Score-P tools have not yet
been used, but we want to gather as much information as possible to improve the efficiency of
our codes. As a requirement/request we would like to see in Paraver and in Score-P a global
visualization similar to the roofline analysis of VTune. A detailed analysis of GPU performances
is also very useful.

KU Leuven is also looking at the possible analysis of memory-access patterns that can be
obtained using the MemAxes optimisation cycle. The code xPic is extremely sensitive to
memory-access patterns, as such we require better analysis tools and better memory handling
as proposed in WP2. This is one of many other possible optimisations that we will explore in
this project, if we have enough time.

• WP3: Work on using containers for our two codes, xPic and AIDApy, is ongoing for two major
reasons: a) the compilation of xPic can be difficult and cumbersome for users not familiar with
HPC environments, and b) the management of Python packages and virtual environments for
the AIDApy code is not straightforward, in particular when the reproducibility of experiments is
important. Containerization using Singularity has already been tested on these two cases. In
our interactions with WP3 we will formalize and setup two solutions following the recommended
best practices.

KU Leuven also has a long tradition of version control, and in particular, GitLab has been a
used for a few years now. CD/CI tools have already been deployed in our workflow, but only
following the most basic procedures. We plan to improve our use of the CI tools included in
GitLab for our codes. CI tools are complementary to the work done in WP1 with the support of
benchmarking cases using JUBE. The CI tools will be used to automatically launch specific
JUBE cases and keep track of the evolution of our codes.

Finally we will test the newest scheduling strategies installed in SLURM for the execution of
MSA jobs. The codes xPic and AIDApy can be coupled and used simultaneously in all the three
modules of the DEEP system’s MSA prototype. We plan to demonstrate the use of the newest
developments in job scheduling by the end of the project using a fully coupled xPic-AIDApy
run for the analysis of space weather. We have already tested some of the new MSA features
of SLURM, including the launch on three modules and the use of gateways to transfer data
between models. We still need to perform more in depth studies of these interactions.

DEEP-SEA - 955606 13 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

We will also test in the future the use of a differed job starting for the AIDApy/GMM code. We
will test the corresponding options in the SLURM script but also, if we have time and resources
available, the execution of the SLURM API from within the code xPic.

• WP4: Possibilities to use Processing In Memory (PIM) in the code xPic are being explored. We
find that there are some basic operations that could be carried completely with a PIM procedure,
like reductions or sorting. We have expressed that we can collaborate in the co-design and
testing of the PIM libraries.expressed that we can collaborate in the co-design and testing of
the PIM libraries.

Our two codes xPic and AIDApy require an update of their I/O routines. At the very large scale,
with thousands of processors, we have noticed the parallel writing of particle files in the code
xPic is slow. We are seeking help from our colleagues to find possible solutions to this particular
issue. The DEEP system is a very good development platform, but in this particular case we
need to perform tests on larger systems, like JUWELS, to find and correct any large-scale I/O
issues.

• WP5: In addition to the requirements expressed in the previous subsection, xPic already uses
SIONlib [20] and SCR [21] for the checkpoint/restart procedures in case of a fail or crash. This
system was included some years ago, but needs to be update with the tools developed by WP5.

We will take advantage of the better file-system data structures implemented in WP5 to minimize
data reading bottlenecks in the training of AI/ML techniques requiring large amounts of data.
We have already shown that data locality and access times plays a critical role in the training of
AI/ML. We will collaborate on the testing of these new systems.

2.4. Co-design input

The performances of our applications depends on the optimisation of the libraries used. The
applications of KU Leuven require the coordinated packaging and building the software stack,
containing the optimized versions of al least the following basic libraries: ParaStation MPI, SIONlib,
HDF5, H5hut, and PETSc. In addition, our AI/ML applications require the installation of Python
frameworks like PyTorch and scikit-learn. This is particularly challenging because new functionalities
are added and released constantly at a higher pace than the updating cycles of libraries in an HPC
centre. To minimize the impact on our compilation environments we want to explore the use of
containers, so we require the deployment of Singularity.

We are also co-designing the tools for the analysis techniques proposed in WP2. We find that
these tools are critical for any application that wants to progress towards exascale. KU Leuven has
participated in multiple calls with BSC to work on the Extrae/Paraver tools. We require the support of
experts with these tools to make use of more detailed analyses and in the longer term to perform
extrapolations of performances with additional tools like Dimemas. We require also support in the
analysis of Score-P profiles and traces. We will be comparing the results of both tools to identify their
differences, their strengths and their weaknesses.

KU Leuven is also cooperating on the implementation of efficient parallel I/O using libraries like
SIONlib. Up until now we have prioritized the use of HFD5 because such files can be directly
analysed by post-processing tools like h5py in Python and ParaView. We will evaluate if it is still better

DEEP-SEA - 955606 14 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

to use HDF5 with its performance issues or SIONlib with its incompatibility with post-processing tools.
We need support on the comparison of performances between SIONlib and HDF5. We have seen a
degradation of performances on runs with very high number of processors. We will ask for support
on the actualization of the SIONlib interface in the code xPic.

We need clarification on the interactions between JUBE scripts and GitLab runners for the automatic
execution of tests, in order to trace the evolution of our performance. In addition to the existing
tutorials and documentation, a working example of a simple JUBE/GitLab setup would be helpful for
our own implementations.

Much of the progress described above will be achieved using some of the optimisation cycles proposed
in Deliverable D3.1. We have provided a list of the optimisation cycles we want to implement, the ones
that we find interesting and will explore, and those that we will evaluate if our time and budget allows.
KU Leuven requires clarification on the details of these optimisation cycles: what are their clear
objectives, what are the inputs, and which are the expected outputs. Toy examples would also help to
implement the cycles on our own codes. We also need to understand if the cycles are automatic or
if will be manual procedures. A wiki entry for each one of the optimisation cycles, including a clear
indication of the interfaces, and a set of examples, would be extremely helpful. We are in particular
interested in the use of the profiling and optimisation cycles, i.e. the "MSA-related Optimisation", the
"Energy Optimisation", the "Memory Performance Analysis", and the "Analysis of Data Transfers and
Memory Behaviour".

We also hope that the optimisation cycles will provide automatic "hints" or "indications" during the
code compilation or execution, which can be used to detect optimisation opportunities and heavy
bottlenecks. We have participated in the definition of the optimisation cycles, and we are constantly
informed about their progress thanks to calls and seminars. We are working on their co-design and
we will be implementing the different tools during this project.

2.5. Conclusion

The codes xPic and AIDApy have been ported to the MSA architecture in the DEEP system. We are
improving the parallel performances of the two codes and improving the efficiency of the GPU use. In
collaboration with other WPs, and following the optimisation cycles proposed in this project, we have
the goal to produce MSA ready codes that can be projected to future exascale architectures.

We have a long history of collaborations with multiple European partners in the DEEP projects.
KU Leuven has been working on the co-design of the MSA concept by providing access to our scientific
applications and by testing different new technologies. We are strengthening this collaboration during
the DEEP-SEA project. We have already started working together in the analysis of our codes and
we are eager to implement some of the optimisation cycles proposed by the different WPs.

KU Leuven has already ported the code xPic to the MSA architecture and also tested mockup codes
running on the three modules of the DEEP system, exchanging information between C/C++ codes
and Python scripts. Our codes have already all the necessary intercommunicators and they only
require improvements and optimisations. Our next goal is to optimize the parallel efficiency of these
applications using the collaborations described above and the optimisation cycles proposed in the
project.

DEEP-SEA - 955606 15 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

3. The IFS weather forecasting software

3.1. Introduction

The Integrated Forecasting System (IFS) suite is run operationally at ECMWF on a daily basis. In this
operational context, optimized time-to-solution is critical to achieving high-quality forecasts. The IFS
software has been developed for over 30 years and has been run on various hardware architectures,
such as shared and distributed memory machines, vector and scalar multi-core processors. It is
written mostly in Fortran90, with some more recent Fortran (F03, F08) as well. It depends on a number
of mostly C++ ECMWF libraries, as well as a small number of external scientific libraries (netCDF,
HDF5, FFTW, BLAS). The IFS is currently undergoing significant work in order to prepare it for future
supercomputers, in terms of both GPU compatibility, as well as modularity and flexibility. These efforts
will work in synergy with DEEP-SEA. Investigation of IFS dwarfs and components (communication-
heavy spectral transforms dwarf, compute-heavy CLOUDSC IFS micro-physics dwarf) via DEEP-SEA
optimisation cycles will provide inputs and data-points to GPU offload developments, and reciprocally,
more accelerator-enabled code will become available during the duration of the DEEP-SEA project.
New dwarfs are being created where appropriate, in order to investigate mapping of IFS components
to the MSA system. This is the case for example with the newly developed PAPADAM mini-app, which
couples compute-heavy and communication-heavy IFS components in a small synthetic code-base,
ideal for DEEP-SEA testing.

3.2. Tools, software components and programming models

The DEEP-SEA software stack includes a number of tools and developments aiming to allow improved
use of hardware resources. A combination of these tools will be used to study IFS performance, to
target improvements, and to monitor and asses their effects on overall application performance. This
is described in the optimisation cycles below.

3.2.1. Optimisation cycles

The different optimisation cycles developed in DEEP-SEA are discussed below in relation to the IFS,
and intended IFS improvements during the project.

• Monitoring optimisation cycle: The PAPADAM mini-app performance will be regularly moni-
tored, thus enabling single-metric evaluation of performance evolution with both system stack
updates, and improvements to the application itself. It will serve as an early warning when code
changes have unexpected performance impacts, allowing deeper investigations to be carried
out.

• MSA-related optimisation: The PAPADAM mini-app has been instrumented with Opari2,
allowing Score-P usage. This will be regularly done during the project.

DEEP-SEA - 955606 16 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• Application mapping toolchain: During the DEEP-SEA project, two complementary avenues
of improvements currently underway are expected to be completed. Firstly, an improved
mechanism for MPI setup and communications between different coupled components, will
enable better usage of job resources by the different components. Secondly, offload capability
of the spectral transforms component of PAPADAM and of the IFS to GPUs, is expected to be
completed. Both of these developments will be assessed within this optimisation cycle.

• Malleable optimisation: Investigation of dynamic load balancing and malleability is being
carried out with modifications to the CLOUDSC mini-app to allow the use of DLB. Given the
relatively small load imbalance observed in this mini-app, further work will be carried out to test
DLB-based resources sharing in other IFS grid-point code which exhibits more load imbalance
than CLOUDSC.

• Memory management optimisation: Data movement is known to be a bottleneck in the IFS
physics. This cycle will be deployed on the CLOUDSC mini-app, with the aim of analysing
memory access patterns in the IFS physics.

• High-level programming interfaces: The CLOUDSC IFS physics mini-app is representative
of a large fraction of the computation carried out in grid-point space in the IFS. In previous
HPC2020 projects (EPiGRAM-HS, EuroEXA) it has been used as a platform for prototyping
a GPU porting strategy suitable for deployment on all of the physics parametrization code.
Following these efforts we have an optimized OpenACC-Fortran version of this mini-app which
runs efficiently on GPUs, and a source-to-source toolchain which is able to generate this version
from our baseline Fortran-CPU implementation. These different versions will be used to assess
the production of GPU-capable code with the DaCe framework. The baseline dwarf version will
be parsed with DaCe, and GPU-targeted code will be generated, before being compared to our
existing GPU port.

• Energy Optimisation: Energy-to-solution of the IFS as a whole will be assessed during the
project. We expect that CPU frequency could be reduced in areas of code that are IO-heavy, or
make significant use of GPUs, with little detriment to code performance. The BDPO tool will
enable the testing of these assumptions, and the assessment of their impact on the overall
energy-to-solution metric.

• Memory system performance analysis: It is expected that the CLOUDSC miniapp will be
investigated with the memory system performance analysis cycle, simultaneously with work on
the memory management optimisation cycle.

• Multi-level simulation approach: Compatibility of this tool with the IFS will be investigated.

• Analysis of data transfers and memory behaviour: As with the two other memory-related
cycles, the MemAxes tool will be deployed on the CLOUDSC mini-app, in order to obtain the
most complete view of memory usage characteristics in the IFS physics.

3.2.2. Benchmarking

We have created a JUBE benchmarking script for the PAPADAM mini-app and will create additional
JUBE scripts for the IFS mini-apps as we use them during the project. The JUBE script for PAPADAM
compiles the mini-app with optional Opari2 instrumentation for ScoreP, runs the binary and validates

DEEP-SEA - 955606 17 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

the results. The JUBE script has been integrated into GitLab runners for the DEEP cluster. Additional
JUBE scripts will be developed for other IFS components, as they are investigated in the project.
Full IFS test cases have been defined, which will be used to assess full application impact, once
improvements have been demonstrated in IFS mini-apps.

3.3. Collaborations

We are collaborating with other work packages and expect to continue this throughout the project.
Following is a detailed description of our inter-WP collaboration.

• WP 2 The development and deployment of the JUBE script for the PAPADAM mini-app was
carried out with assistance from WP2. During this work, Opari2 developers were made aware of
the problems encountered in instrumenting PAPDAM. This collaboration is expected to continue
when other JUBE scripts for other IFS components are developed.

• WP 3We have a prototype version of the spectral transforms which leverages persistent
collectives to improve scalability, and would be keen to test this in the DEEP environment in
conjunction with WP3. Therefore, we are ready to use the new standard MPI-4 persistent
collectives as soon as they become available in the DEEP software stack during the DEEP-SEA
project.

• WP 4 Along with active collaboration with developers of the DLB library, interaction with
developers of other tools is expected throughout the project.

3.4. Co-design input

We are working closely with the developers of various tools (e.g. Opari2 and Score-P) to streamline
the Fortran support for the IFS use-case. Along with this we expect to provide feedback on the tools’
application to IFS mini-apps, in terms of usability and of performance. We will thus help in ensuring
compatibility of the tools with the modern Fortran standards present in the IFS codebase.

3.5. Conclusion

The PAPADAM mini-app has been developed under the DEEP-SEA project, with the aim of focusing
on MSA-related improvements. A Continuous Integration (CI) method has been adopted to automate
correctness- and performance-assessment of code changes. Optimisation work will be commencing,
on top of this initial version of PAPADAM as well as on the other IFS mini-apps that will be used
during the project. We have deployed the DLB load-balancing library in the CLOUDSC mini-app and
generated performance profiles associated with this mini-app. We will further investigate possibilities
of load-imbalance mitigation in the IFS based on DLB. The components of the DEEP-SEA software
stack will help in focussing on areas of code where improvements will be most beneficial, as well as
enable the monitoring of correctness and of performance as improvements are implemented.

DEEP-SEA - 955606 18 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

4. Seismic imaging

4.1. Introduction

The Reverse Time Migration (RTM) method images seismic data and is based on the discretization
of the full wave equation. It is employed for oil and gas exploration and allows for accurate imaging of
complex subsurface structures.

The Fraunhofer Reverse Time Migration (FRTM) implements the RTM method in a robust and
massively parallel way by using proprietary HPC tools (c.f section 12.1).

In Full Waveform Inversion (FWI), a kernel performs two wavefield simulations per shot, such as in
FRTM. The forward run simulates a shot and records the synthetic traces at receiver locations. The
backward run uses the difference between data and synthetics as sources for the simulation and runs
backward in time. The wave fields of forward and backward simulations must be correlated in order
to produce the main output of the FWI kernel: a 3D gradient of the parameter inverted. Correlated
wave fields are written to disk and then read on a posterior kernel execution stage. Only at the end of
the kernel run, a clean-up step removes those temporal correlated wave fields. In this regard, the
behaviour of a single FWI kernel is similar to that of FRTM. The gradients from each kernel need
to be stacked, or summed pointwise for all shots. The gradient provides the direction of change in
the model within the inversion process. However, this is not the only simulation the FWI require. A
minimization of a misfit functions 𝐸(m) [22], where m is the current model, need to be done. The
computation of 𝐸 requires modelling accurately the response of our current model m by means of
a forward simulation, also called test. Together with a few test runs (between two and six typically)
misfit is accurate enough and so the model is updated: we have performed a single iteration of FWI.
Optimisation requires about 15-30 iteration steps per frequency band used and typical runs use 3-10
frequency bands.

The Barcelona Subsurface Imaging Tools (BSIT) is a proprietary code with a high level of maturity
and several other configurations besides FWI. Therefore, within DEEP-SEA all experiments and
optimisation approaches use a BSIT analogue referred to as BSIT Mockup. This code was built to
emulate the characteristics of BSIT (e.g data workflow, numerical schemes, parallel paradigms, etc)
without the functional capability of the original BSIT code. The Mockup is easy to configure and
modify, thus providing an ideal environment to investigate different optimisation cycles in the context
DEEP-SEA project.

4.2. Tools, SW Components & programming models

4.2.1. FRTM

FRTM employs two levels of parallelism to compute the final result. The concurrent computation
and aggregation of shots is trivially parallel and managed by the GPI-Space runtime system using
an appropriate workflow implementation. The FRTM single-shot computation is a hybrid parallel
GASPI-based application using a static two-level domain decomposition. On the first level, the

DEEP-SEA - 955606 19 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

simulation domain is partitioned on the distributed memory level across the processes and data is
exchanged using GASPI. On the second level, the process local partitions are divided to allow for
a task-based execution on the shared memory level using the pthread Asynchronous Constrained
Execution (ACE) task scheduler. On the second level, the decomposition is very fine grained due to
which many compute tasks are generated. The dynamic scheduling is then able to equilibrate any
potential imbalances on the node level.

The kernels used to compute the propagation of the pseudo-acoustic wave fields are usually memory
bound for most of the different available material classes. As such memory locality is crucial in order
to achieve a good performance and FRTM may profit from the memory placement tools developed
in the project. The concurrent shot computation is trivially parallel and is suitable to evaluate the
malleability features developed along the project. Resources might be easily removed or added at
that level of parallelism along the computation of the final result.

FRTM uses the JUBE benchmarking environment [4] to create a set of benchmarks, run those on
the DEEP system and evaluate the results. The provided JUBE script instruments the FRTM proxy
application. It comes as part of the FRTM GitLab repository, which contains all the required files.
Tracing and profiling are performed using Score-P [5].

4.2.2. BSIT

BSIT distinguishes different parallelism paradigms. First, the workflow manages to run thousands
of independent simulations (shots). Based on a master–worker approach, its natures allows the
scalability to be almost linear. However, the performance of BSIT is obtained from the kernels, which
simulates the wavefield simulation for each shot. Kernels, as in FRTM, are usually memory bound. In
order to solve that limitation, BSIT kernels currently implement two levels of parallelism. First, the
distributed memory parallelization. For those shots that do not fit in a computational node in terms of
memory, it uses domain decomposition and MPI routines are used for inter-domain communication,
including data exchange and gather and scatter operations when needed. Second, the shared
memory parallelization. The PDE solver consists in two loops which are collapsed and parallelized
using OpenMP leaving to each thread a number of consecutive memory regions to update.

BSIT also uses JUBE environment. The test script manages the download, compilation, and execution
of the test. The code is instrumented so that Extrae can be used to analyse the obtained traces. This
first test produces one inversion iteration and is set up to use OpenMP parallelism only. In its current
configuration, this first test performs the computation of a gradient (one forward and a backward
run) and single line search or test run (forward run) for a single shot. JUBE benchmark are on the
DEEP-SEA GitLab repository.

4.3. Collaborations

We are collaborating with the other workpackages. The details of our inter-workpackage collaboration
are the following:

• WP2: Integrate Score-P into the FRTM proxy app and Extrae/Paraver assimilation and tuning
for the BSIT benchmark generation using JUBE.

DEEP-SEA - 955606 20 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• WP3: Work on GPI and GPI-Space and the memory management tools. BSIT is looking at the
malleability tools, the energy consumption libraries, and the mutli-level simulation approach
using MUSA. We are evaluating the memory management and performance optimisation cycles
for BSIT.

• WP5 : FRTM is planning to have a look into the malleability and resiliency features in addition
to the standard monitoring cycle.

4.4. Co-design input

FRTM aims to provide input to the malleability features developed in WP5, especially for the interaction
of GPI-Space with SLURM and vice versa. A tight coupling would allow to dynamically shrink or
increase the used MSA resources in dependence of e.g. a preconfigurable job priority in combination
with an optimal and/or minimal resource demand which is balanced with the current availability of
resources. That would allow SLURM to shrink or increase the resources in order to allow for other
jobs of higher priority on one hand, while FRTM could run at the maximum number of currently
available resources at any time on the hand.

BSIT is a real-world application with high-memory requirements that serves as a model for obtaining
useful feedback while evaluating novel memory hardware and libraries. Furthermore, the new
DEEP-SEA programming models may be integrated for assessing malleability, resiliency, and energy
consumption as well as the use of heterogeneous execution models, such as those provided by
MUSA.

4.5. Conclusion

BSIT and FRTM are highly mature application that comes with a mockup version that allows col-
laborating within the optimisation cycles that require the evaluation of novel execution models and
programming paradigms. Nevertheless, BSIT’s main collaboration relies on integrating the most
recent memory hardware and building a reference benchmark. FRTM is an excellent test case for the
malleability features developed for GPI-Space.

DEEP-SEA - 955606 21 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

5. GROMACS: Molecular Dynamics

5.1. Introduction

GROMACS is a massively parallel open source1 Molecular Dynamics (MD) simulation code [23]. It
is written in C++ and uses MPI and OpenMP libraries for parallel execution. It studies the physics
of atoms and molecules by using the interaction forces between them to solve the equations of
motion. MD is widely used by researchers in diverse fields such as drug discovery, protein folding,
and material science. There is also extensive support for GPU acceleration for the whole application,
and it has shown to be a cost effective way to run MD simulations [24, 25]. GROMACS uses CUDA
for acceleration on Nvidia GPUs and OpenCL for GPU acceleration on AMD devices (both GPUs and
APUs) and Intel integrated GPUs.

The Multiple-Program, Multiple-Data (MPMD) structure of GROMACS allows it to use the hardware
in multiple configurations. The MPMD design separates the Particle-Mesh Ewald (PME) and the
Particle-Particle (PP) calculations into a pipeline parallelism. This is described in detail in D1.1 and
D1.2 [2, 3] and creates a natural load-balancing problem which will be of key importance when
optimizing GROMACS for MSA systems. The PME calculations can use acceleration in different
ways in a heterogeneous jobs. A job on a single node with a single GPU has four ways of using
GPU acceleration, all useful for maximizing the utilization of the available hardware and maximizing
throughput.

Due to the nature of MD we can optimize for several different types of jobs, including large single-
trajectory simulations and multiple short-trajectory simulations for different types of enhanced sam-
pling methods. It is possible to increase throughput by running batched simulations on the same
hardware.

It is clear from these examples that GROMACS is a malleable code with many opportunities for
optimisation within a MSA-system.

5.2. Tools, SW Components and programming models

The DEEP software stack contains various tools for performance monitoring and performance
enhancement to support the transition towards Exascale HPC. We will in this section describe the
most suitable tools that DEEP-SEA provides to solve critical challenges that exascale computing will
present for GROMACS.

5.2.1. Optimisation Cycles

There is a set of optimisation cycles developed within DEEP-SEA WP3. These optimisation cycles
represent typical workflows for application development on the DEEP system. In this section, we
describe their potential usefulness for GROMACS and the current state of use.

1https://gitlab.com/gromacs/gromacs

DEEP-SEA - 955606 22 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• Monitoring Optimisation Cycle The monitoring infrastructure in DEEP will be used to track
performance development and as an entry point into the other optimisation cycles.

• MSA-related Optimisation This cycle is based on the performance monitoring tool Score-P.
Profiling and tracing with Score-P is now supported by GROMACS after a light modification of
GROMACS. We have verified compatibility between Extra-P and GROMACS by using input
data from Score-P profiling of GROMACS in Extra-P.

• Application Mapping Toolchain This optimisation cycle is useful for GROMACS to choose the
best configurations suited to the available modules/resources. This cycle will work together with
the two previous optimisation cycles to create an optimal mapping between the application’s
configuration and the available resources.

• Malleable Optimisation Cycles There are several potential use cases where GROMACS can
utilise this optimisation cycle, for system wide malleability and on a node level. Although there
are no concrete specifications for this cycle yet, some key aspects of GROMACS that relates
to this cycle: GORMACS has support for check-pointing, it should therefore be possible to
adapt to a malleable MSA-systems without any re-write of GROMACS code. The code has a
malleable MPMD design with many configurations and can utilise heterogeneous hardware in
multiple ways, for example with different combinations of off-loading PME calculations to GPU.
GROMACS can be used for ensemble jobs and have support for multiple simulations on shared
resources which allows for a flexible use on a system level.

We will, with the DLB library, explore node-level malleability. The DLB library has a potential to
increase throughput, peak performance and usability for application users. We aim to use DLB
together with Extrae found in other optimisation cycles.

• Memory Management Optimisation This optimisation cycle is based on profiling from Extrae,
we will based on the results of the profiling evaluate what optimisations within this cycle are
useful.

• High-level Programming Interfaces Cycle We see the possibility of using DaCe to solve
the PME calculation as a data-flow problem. This has been initialized by implementing a 1D
FFT, which is the basis of the 3D FFT algorithm which is an integral part of PME. The PME
calculation is the part of the code that limits strong scaling.

• Energy Optimisation We will investigate the use of BDPO for GROMACS.

• Memory System Performance Analysis We will analyse the performance of the heteroge-
neous memory system using Extrae, Paraver and PROFET. From this analysis we will evaluate
the need for optimisation within the optimisation cycle.

• Multi-Level Simulation Approach We will investigate the compatibility of the software towards
the end of the project after investigating other optimisation cycles.

• Analysis of Data Transfers and Memory Behaviour We would like to look into it after we
have completed work with the other optimisation cycles.

• Analysis and Debugging of MPI-RMA Communications GROMACS does not utilize one-
sided MPI; however, there are potential use-cases for one-sided MPI in GROMACS, such as for
the 3D FFT communication. This optimisation cycle will be investigated as an optimisation tool
towards the end of the project if our analysis with the other optimisation cycles are complete.

DEEP-SEA - 955606 23 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

5.2.2. Benchmarking

We have several use-cases described in D1.2 [3] included in JUBE for automatic testing. There are
more test-cases planned to better exploit the malleable system and showcase the many use-cases of
GROMACS. We will also integrate GitLab Runners for remote execution of CI/CD tasks.

5.3. Collaborations

The following are planned and completed collaborations between WPs.

• WP2 We have had collaborations with WP2 in implementing JUBE, modifying GROMACS to
work with Score-P and designing meaningful benchmarks.

• WP3 We expect future collaboration with WP3 when implementing the optimisation cycles.

• WP4 We are developing kernels in DaCe for GROMACS and Nek. We have initiated contact
with the developers of DLB library in the malleable optimisation cycles for node-level malleability.

• WP5 We aim to collaborate with WP5 in optimisation of MPI collectives relevant to GROMACS.

5.4. Co-design input

At the present stage we have no co-design input.

5.5. Conclusions

We have set up an environment for performance testing and profiling GROMACS on the DEEP
system, with JUBE and Score-P. Work has been initiated in identifying and testing relevant software
from the DEEP software stack used in the optimisation cycles, such as Score-P, Extra-P, Extrae,
Paraver, PROFET and DLB Library. The High-level Programming interface is investigated through
DaCe with the aim of solving the main bottleneck of the current code, but also to make a unified
portable solution.

DEEP-SEA - 955606 24 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

6. Computational Fluid Dynamics: Nek

Within the DEEP-SEA project, the highly scalable computational fluid dynamics (CFD) solver
Nek5000 [26] has been chosen as a suitable candidate to utilize the DEEP-SEA software stack.
Nek5000 has been used extensively for production runs to obtain high-fidelity turbulence simulations
and has scaled to over a million MPI ranks on CPUs. Nek5000 is based on the spectral-element
method and uses a so-called matrix-free approach to evaluate linear systems, yielding minimal
communication between MPI-ranks and obtaining high-order accuracy in space [27]. These aspects
make the spectral-element method particularly appealing as we approach exascale.

However, Nek5000 in its current form uses a legacy codebase in Fortran 77 and static memory
allocation. This has limited its use of accelerators, such as GPUs. At KTH a modernized version
of Nek5000 has therefore been under development which uses modern Fortran 08 and an object-
oriented approach to accommodate different computer architectures. This solver is called Neko
and was recently made public1. In our efforts to utilize the DEEP system and its booster modules
in conjunction with the DEEP-SEA software stack we are integrating Neko into our workflow to
accommodate more computer architectures and for easier integration of high-level programming
approaches such as DaCe. When referring to Nek5000 and its successor Neko we will use the
common term "Nek".

6.1. Tools, software components and programming models

The DEEP-SEA software stack offers several different opportunities for us to explore for Nek. In part,
we have the different software developed by our collaborators in other work packages as well as how
they synergize in each optimisation cycle.

6.1.1. Benchmarking

For benchmarking we have developed initial JUBE scripts for the mini-app for Nek5000 - Nekbone as
well as a wider range of tests for Neko. The JUBE script for Neko compiles the solver for CPUs and
GPUs and runs a relevant simulation of the Taylor-Green vortex at Re=1600 with 32 000 elements
on 2-16 CPU nodes as well 2-8 Booster nodes on the DEEP system. With these simple tests, the
performance improvements that we will achieve through the different optimisation cycles will be clear
and also illustrate the correctness of the solver as it is optimized. Integration of the JUBE script into
Gitlab runners that run on the DEEP system will also be evaluated.

We have also made a larger scaling study with Neko on 16-64 V100 GPUs on the DEEP system. The
very same test has been run on several different supercomputers and computer architectures. With
this reference data, we will be able to compare the scalability and performance of Neko over large
time scales.

1https://github.com/ExtremeFLOW/neko

DEEP-SEA - 955606 25 31.03.2022

https://github.com/ExtremeFLOW/neko

D1.3 Applications use of DEEP-SEA software stack

6.1.2. Optimisation cycles

In this section, we will go through the different optimisation cycles and their applicability to Nek. We
will briefly discuss how we can organize our workflow and which ones are most interesting to us.

• Monitoring optimisation cycle: Neko will continually be evaluated with LLview and DCDB
and compared to historic data. With this information, we will be able to address performance
bottlenecks and see how performance relates to the underlying hardware. While not an
immediate focus of our work, this optimisation cycle will always be one of the foundations our
optimisations rely on.

• MSA-related optimisation: Due to issues with Score-P and mpi_f08 the applicability of this
optimisation cycle is currently limited. However, by integrating Neko, instead of Nek5000, we
now provide full GPU and CPU support. The utilization of different modules concurrently is not
fully supported, but might be of interest going forward, even if it is not a priority. The main issue
with utilizing different modules is the load balancing between different computer architectures as
the code provides no natural way to offload certain tasks to a CPU or GPU, the only difference
will be how many elements each node gets.

• Application mapping toolchain: Neko currently scales well on both CPUs and GPUs so the
mapping to a given allocation mostly revolves around using as many resources as possible.
For CPUs, the scaling is linear and the strong scaling limit is usually hard to reach. As long
as the number of elements on the GPUs is more than 4000 the scalability is also larger than
70%. To run on a mix of CPU and GPU nodes the load balancing must be addressed before
we optimize the mapping.

• Malleable optimisation cycles: As for malleability, Neko provides support for checkpoints and
a simulation could thus be restarted when more computing resources are available. It also
provides support for OS signals so another possible approach would be to rebalance the mesh
as more nodes join the job. As the software details of the malleable online monitor are limited
we do not yet know which approach will be most effective.

• Memory management optimisation pipeline Nek uses large arrays with very few complicated
memory patterns. In addition, no significant amount of data is moved between the host and
device except during initialization and when performing I/O. However, to establish if this can
be easily investigated and whether the performance gains will be deemed significant requires
further scrutiny.

• High-level programming interfaces In this part of the project we will investigate using DaCe
to generate highly optimized kernels for suitable parts of Nek. In particular, we are interested in
the formation and evaluation of the linear system 𝐴𝑥 in the spectral element method. Efficient
evaluation of 𝐴𝑥 is essential for high performance in the spectral element method. We are
interested in evaluating how DaCe may unveil non-trivial optimisations for the system 𝐴𝑥 and
the linear solvers used to solve the system.

• Energy Optimisation We will evaluate whether BDPO can be used to regulate the energy
consumption of an allocated node. Nek is generally memory-bound so it might be possible to
reduce, for example, clock speeds to great effect without sacrificing any significant performance.

DEEP-SEA - 955606 26 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• Memory system performance analysis We might use the memory-system performance
analysis to improve the data locality in Nek. We know from experience that memory bandwidth
is a key bottleneck and are interested in ways to remedy this.

• Multi-level simulation approach Simulating scaling-up our application is interesting, but is
highly dependent on the problem size. It is therefore unclear at this moment how much insight
multi-level simulations may provide.

• Analysis of data transfers and memory behaviour MemAxes appears to be an appealing
tool to track suboptimal memory behaviour. MemAxes might help us improve the data locality
and communication pattern within Neko

• Analysis and debugging of MPI-RMA communications We have previous experience look-
ing at one-sided communications and see the clear potential in improving the strong scalability
in Neko. Right now, however, Neko does not make use of one-sided communication. If we
extend the communication in Neko to use MPI-RMA we will evaluate how we can use the
RMA-Analyser to find errors and bugs in our code.

6.2. Collaboration

Our collaboration with the other workpackages and the topics of collaboration are listed below:

• WP2: We are collaborating to instrument our application with Score-P and will work to integrate
the Gitlab runners for our JUBE script for Neko.

• WP4: Utilize DaCe for computationally demanding tasks in Nek.

We are also connected to the IO-SEA project as our research group participates in that develop-
ment too. We hope that this collaboration will help us improve the IO behaviour of Nek and other
applications.

6.3. Co-design input

We need support for mpi_f08 to profile Neko. As Neko is the variation of Nek5000 which has the
largest possibility to accommodate future heterogeneous systems, mpi_f08 support is essential for
us to be able to use the tools within DEEP-SEA.

6.4. Conclusion

We have integrated and tested out Neko, our modern version of Nek5000, on the DEEP system to a
large extent. We are now aiming to make initial use of DaCe and to evaluate the performance of Neko
with the different profilers used in the optimisation cycles. As Neko is evolving fast, we are optimistic
that we will be able to use the DEEP software stack to provide a high-performance and malleable
CFD solver that is compatible with a variety of heterogeneous computer architectures.

DEEP-SEA - 955606 27 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

7. Neutron Monte-Carlo Transport for Nuclear
Energy

7.1. Introduction

The PATMOS code developed by CEA has been designed to explore the requirements of next-
generation Monte Carlo neutron transport in terms of code architecture, parallelism, algorithms,
memory and CPU time. The goal of PATMOS is to demonstrate the feasibility of Monte Carlo
calculations for the depletion of a full-scale pressurized water reactor, taking into account fuel
depletion, as well as thermo-hydraulics and thermo-mechanical feedbacks.

The application is written in C++ and relies on the hybrid MPI+OpenMP programming model to express
massive parallelism. In large depletion calculations, the amount of memory required for each MPI
rank may be very large (up to 1 TB). For this reason, it is typical to maximize sharing and minimize
the memory footprint by running only one MPI rank on each compute node.

7.2. Tools, software components and programming models

This section details the developments and evolutions that will be made inside the PATMOS application
regarding the software stack developed in the DEEP-SEA project. It is organized around the tools,
the software components (including programming models) and the optimisation cycles.

7.2.1. Tools

Regarding tools, PATMOS relies on debugging and profiling software to enable further advanced
developments. In the DEEP-SEA project, we will use tracing tools, like Score-P [5], and trace
visualization/analysis tools, like Scalasca [8]. Furthermore, PATMOS has been integrated into the
JUBE system to enable benchmarking and validation.

7.2.2. Software components and programming models

The upcoming main new developments in PATMOS will be relying on the DEEP-SEA software stack
and are organized around the intra-node and inter-node features and capabilities of the DEEP
system:

1. Intra-node developments

The main new developments of PATMOS in intra-node configuration will be related to memory
storage and heterogeneous computing. As mentioned in the introduction of this chapter,
PATMOS is written in C++ and relies on MPI and OpenMP parallel-programming models to
exploit homogeneous clusters, i.e. CPU-only supercomputers with 1 level of memory. The main

DEEP-SEA - 955606 28 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

goal of this development is to add the possibility to exploit the different resources of memory
and compute units:

• Memory-level support

Regarding memory storage, the first enhancement will be related to the exploitation of
additional memory levels available on recent compute nodes. Because of the overall
memory footprint, which can be very large, the ability to store data inside a fast memory
tier with a large capacity may lead to performance improvements.

• GPU support

Regarding compute-unit support, the main evolution of PATMOS inside the DEEP-SEA
project will be regarding leveraging of GPU-based architectures. This step is mandatory to
exploit future generations of supercomputers, especially in MSA clusters. Some parts of
PATMOS are compute-intensive enough to port them onto GPU devices in an incremental
fashion.

2. Inter-Node Developments

Regarding its inter-node configuration, PATMOS will try to exploit simultaneously a variety of
different compute nodes through MSA. One of the previously-described goals related to GPU
support will help motivate the leveraging of modular architectures, which expose different kind
of compute units. For this purpose, PATMOS will rely on the ability of the MPI layer to adapt to
different architectures inside a cluster, for example using MPI gateways. Based on this new
feature and the support of the job manager, it will be possible to deploy PATMOS on various
compute nodes with different compute-unit and memory-storage configurations.

7.2.3. Optimisation Cycles

This section details the interaction between PATMOS and the various optimisation cycles describes in
DEEP-SEA Deliverable D1.3 [1] according to the available features in PATMOS and planned future
developments for PATMOS as part of the DEEP-SEA project.

• Monitoring Optimisation cycle This is one of the major fundamental cycles. PATMOS will
likely use it to help start monitoring information and metrics to feed into the other cycles. For
example, this is mandatory to help execute the cycle regarding application mapping related to
memory storage.

• MSA-related optimisation One goal of PATMOS is to exploit MSA, this cycle will help us
achieve this. The cycle analyses communication patterns made by applications and aids in un-
derstanding the behaviour of applications on MSA and the corresponding possible optimisations
to apply.

• Application Mapping Toolchain Exploiting MSA is something that can be optimized from a
communication point of view thanks to the previous cycle, but being sure to map the right parts
of an application to the most suitable architecture is another important point. This cycle will
help in deciding which part should be allocated on a specific architecture. This can be useful
after enabling MSA support, memory-level support and GPU support in PATMOS.

DEEP-SEA - 955606 29 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• Malleable Optimisation cycles As PATMOS is based on Monte Carlo and statistics, the
direct application of malleability can be complex, especially during the project lifetime. Indeed,
dynamically adapting or redistributing the number of MPI ranks can lead to change in final
statistics which would require some modifications in the algorithm and source code.

• Memory management optimisation pipeline The exploitation of multiple memory levels can
be complex especially when checking where allocations would benefit from being allocated
to another memory tier. This cycle will help detect dynamic allocation and porting issues to a
dedicated programming model like OpenMP.

• High-level programming interfaces PATMOS does not currently exploit task parallelism and
it does not include kernels in the Nablab language. Furthermore, because of the Monte Carlo
approach, the main physics might not be the most suitable target for Nablab. Therefore, this
cycle will not be studied during this project.

• Energy optimisation the ability to monitor energy consumption and the possibility to drive
such consumption down would be helpful. Unfortunately, this study might be too complex to
conduct depending on time availability during the project.

• Memory system performance analysis This in-depth analysis would be complementary to
the previous cycle dedicated to memory levels, but it can be complex to schedule such a study
during the lifetime of this project.

• Multi-level simulation approach This cycle could be of interest, but there might be no time
during the project.

• Analysis of data transfers and memory behaviour This cycle could be of interest, but there
might be no time during the project.

• Analysis and debugging of MPI-RMA communications: PATMOS does not currently rely
on one-sided MPI communications. Therefore, this cycle might not be applicable.

7.3. Collaborations

This section describes the collaborations between PATMOS and the other work packages.

• WP2 The collaborations will be based on the experience of using the different tools and the
benchmark environment of the project through the usage of JUBE for benchmarking PATMOS
input sets.

• WP3 The main collaborations with WP3 will be related to the low-level implementation of
important components of the DEEP-SEA software stack. Indeed, the main mechanisms for
exploiting MSA and memory-level support will be designed and developed inside this work
package of the project. Even if the interface with the application will not be directly trough WP3
there will be interactions to help debug and optimize WP3 approaches.

DEEP-SEA - 955606 30 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• WP4 This work package will provide a functional implementation of the OpenMP compiler/run-
time with support for multiple memory tiers. PATMOS will use this specific interface to express
memory allocation to be done into others levels of memory. The collaboration will be based on
the usage and the optimisation of this interface.

• WP5 This work package proposes the high-level implementation of all mechanisms related
to the best exploitation of MSA. This is one of the major goals of PATMOS in this project:
being able to run and leverage the different architectures available inside a cluster. Therefore,
this collaboration will focus on the MPI interface for gateways and the exploitation of different
compute nodes (including GPUs).

7.4. Co-design input

PATMOS will provide the test cases detailed in Deliverable 1.1 [2] and will fully include them inside the
JUBE systems to help extracting metrics and inclusion inside optimisation cycles. During PATMOS
development to use the new component provided by the DEEP-SEA project (e.g., OpenMP memory
levels or MPI gateway support), PATMOS will update the source code and test cases to exploit these
components, while giving feedback to other developers.

On the flip side, PATMOS will expect help to exploit MSA on the technical side and on the main
approach to drive the decisions on porting a specific part and/or a specific test case to a dedicated
architecture (different compute units and/or memory storage).

7.5. Conclusion

PATMOS provides an existing implementation that already support multiple parallel-programming
models (MPI and OpenMP) and test cases that have different requirements in terms of memory
consumption and compute power. The main PATMOS developments that will be done to exploit the
DEEP-SEA software stack will rely on the ability to exploit the MSA including the communications
between the different architectures and the performance inside a cluster (either homogeneous or
heterogeneous). This will provide us with several scenarios to help the other work packages when
designing and optimizing their components.

DEEP-SEA - 955606 31 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

8. Earth System Modelling: TSMP

8.1. Introduction

The Terrestrial Systems Modelling Platform (TSMP) is a fully coupled, scale-consistent, highly
modular, and massively parallel regional Earth System Model. TSMP is capable of simulating
complex interactions and feedbacks between the different compartments of terrestrial systems.
Specifically, it enables the simulation of mass, energy, and momentum fluxes and exchanges across
the land surface, the subsurface, and the atmosphere [28]. TSMP is maintained by the Simulation
and Data Laboratory Terrestrial Systems (SDLTS) at JSC, and is an open source software publicly
available on GitHub 1. Technically, TSMP (v1.2.3) is a model interface which couples three core model
components: the COSMO (v5.01) model for atmospheric simulations, the CLM (v3.5) land surface
model and the ParFlow (v3.9) hydrological model. Coupling is done through the OASIS3-MCT coupler.
These component models, which are mostly developed by third parties, span different programming
languages, parallelization and acceleration solutions, which motivates the modular nature of TSMP.
TSMP is flexible, allowing someone to build with one, two or all three component models. TSMP is
capable of Data Assimilation through the Parallel Data Assimilation Framework (PDAF). Aditionally,
ongoing TSMP developments will interact with DEEP-SEA activities. The most relevant of these will
be the introduction of the ICON [29] atmospheric model, which will replace COSMO as an operational
system in many European institutions, and the upgrade from CLM3.5 to CLM5. These experimental
branches will soon be part of the stable TSMP release, and therefore will also be incorporated into
DEEP-SEA activities.

8.2. Tools, software components and programming models

DEEP-SEA offers a number of solutions and tools which are of interest for TSMP to explore. We
have identified three key challenges that TSMP faces towards exascale, which are the conceptual
framework with which we assess DEEP-SEA’s tools, software and programming models.

The first challenge for TSMP is to improve its inter-node parallelism and scalability. A large part
of these efforts are around asynchronous communications, I/O, host-device memory exchange,
and optimal GPU performance, among others. Process (inter-component model) synchronization
overheads, and to a lesser extent intra-process (MPI tasks within a single component) synchronization
need to be minimized in order to reduce the costs associated with blocking.

Second, although memory constraints are not currently an issue of large concern in TSMP, there is
likely benefit to be found on programming models reducing intra-node and inter-node data moving
costs, both in terms of time and energy. TSMP needs support from these new programming models
and new technologies for managing memory access overheads which have an increasing impact
at scale and Software-Managed Memories to provide more support for runtime and application
management of memory. For example, The Mitos wrapper feeds the MemAxes [30] analyses and

1https://github.com/HPSCTerrSys/TSMP

DEEP-SEA - 955606 32 31.03.2022

https://github.com/HPSCTerrSys/TSMP

D1.3 Applications use of DEEP-SEA software stack

visualizes outputs that can identify the problematic sections and bottlenecks. These outputs can be
the primary source to pursue optimisations or using software-managed memories for TSMP.

The third challenge is evident from TSMP runtime results (see section 16.3 in [3]). These show the
static behaviour of mapping model components and their processes to physical resources and clearly
show that the different loads of each of the component models can produce long idle times, mostly on
the resources allocated to CLM. This leads to the idea of leveraging on a dynamic strategy, enabling
dynamic load balancing, higher resource use efficiency, and possibly higher resilience. Moreover,
within the MSA concept, different job configurations may lead to very different loads, which are difficult
to predict. Consequently, dynamically re-balancing jobs to better satisfy optimal performance (both
in terms of runtime and resource use efficiency) is highly relevant for TSMP. Additionally, resource
use efficiency translates also into energy use efficiency, a matter of particular concern for Earth
system models. Consequently, TSMP expects that solutions such as malleability, which may not
necessarily translate into runtime reduction, will increase TSMP’s efficiency on the use of the HPC
resources. Additionally, enabling malleability in TSMP, will contribute to system-level management
(e.g., adaptive power management, transient faults, maintenance), by adaptively remapping logical
program constructs to physical resources as well as respond to elastic resources.

8.2.1. Benchmarking

TSMP has been setup within a JUBE workflow for benchmarking, together with two standard cases.
One of these cases aims towards testing scalability, albeit on an idealised problem. The second
test is a short-runtime version of a production job, ill-suited for extensive scalability tests, but well
suited for performance analysis. Both of these tests will be continuously assessed with the tools
which are encompassed by the monitoring optimisation cycle and the MSA-related optimisation cycle.
The workflow is flexible enough that it will allow to explore performance changes on homogeneous,
heterogeneous and modular TSMP jobs.

8.2.2. Optimisation cycles

The DEEP-SEA optimisation cycles are a way to deploy and integrate different solutions in the
DEEP-SEA software stack. Herein, we briefly discuss the possible optimisation cycles which are of
interest to explore with TSMP, also highlighting priorities and the relationship to different software
components within DEEP-SEA.

• Monitoring optimisation cycle The monitoring infrastructure collects the first level of informa-
tion from TSMP runs. Inspecting LLview reports is already standard practice for both production
and development runs. As imagined in this optimisation cycle, this information is already
used for basic optimisation approaches for TSMP. In particular, in heterogeneous (and in the
future, modular) jobs LLview has provided already specific insights for a basic understanding
of the different loads and usages that the TSMP component models demand (especially for
production-level jobs, which are not strictly benchmarked within DEEP-SEA activities, and for
which detailed tracing is very costly).

DEEP-SEA - 955606 33 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• MSA-related optimisation This optimisation cycle is particularly relevant to understand inter-
module communications and load balancing, which is key to the current and foreseeable state of
TSMP. Currently, of the three component models only ParFlow is ported to GPUs. Consequently,
the expected default modular production jobs have ParFlow running on accelerators, while
COSMO and CLM run on CPU modules. To achieve this, it is key to optimise inter-module
traffic and inter-module load balancing. So far, profiling and tracing of TSMP via Score-P
and Scalasca has been performed and the results are currently being studied to understand
wait-state instance statistics and load balancing. Call path profiles are visualized with CUBE.
With this information, and the deployment of these activities on the DEEP system, possible
optimisations will be evaluated. Moreover, in the future larger jobs in which the inter-module
load balancing may need to be re-assessed and re-optimized will also be evaluated.

• Application Mapping Toolchain (AMT) The runtime information collected for TSMP in the two
previous optimisation cycles can be used together with Extra-P to model possible alternative
configuration in the MSA. It could also serve as a guideline for dynamic load balancing, dynamic
resource allocations and job malleability limits. Implementing this cycle is planned.

• Malleable Optimisation cycles Malleability is of high interest for TSMP. There are several
possible levels of malleability. Firstly, when TSMP is restarted, jobs could be resized. TSMP is
often run for very long simulation times, which implies a large number of checkpoint restarts
(typically following system administrator policies). Full malleability of the jobs could also be of
interest. This is particularly true for ensemble runs. These are parallel jobs, all with identical
resource allocation, and solving the same problem with small variations. However, it is often the
case that some ensemble members (single job) require a longer runtime than the mean of the
ensemble. This variability is unpredictable. Since often there is a periodic reduction operation,
this hinders the entire ensemble. Consequently, shrinking fast(er) jobs while simultaneously
enlarging slow(er) jobs could also be of benefit. Currently, it is still difficult to assess the
technical aspects and the effort required to implement this, as malleability in DEEP-SEA is still
in early development.

• High-level programming interfaces cycle This cycle not of interest for TSMP. We do not
support or require Dace or NabLab, nor do we plan reformulations of component model kernels
to support Dace or NabLab.

• Energy optimisation TSMP aims to be energy efficient. Consequently, documenting and
optimizing energy usage is of interest. Particularly, it will be of interest to explore whether het-
erogeneous/modular jobs are energetically more efficient than homogeneous jobs, aside from
potential performance gains, as well as optimising heterogeneous and modular configurations
for energy efficiency. Energy monitoring may also lead to possible alternative energy-reducing
techniques, e.g. underclocking CPU cores assigned to CLM, as these processes are not limiting
computations. Implementing this optimisation cycle is not currently a high priority, but will be
addressed in the future.

• Memory-system performance analysis and prediction Memory performance has not been
a main issue for TSMP. However, it is of interest to evaluate the performance within a heteroge-
neous and modular system (making use of Extrae, PROFET, and Paraver). These metrics are
considered in order to reliably evaluate the performance of the model by behaviour-oriented
memory-related monitoring. This is not of high priority at the moment, but will be considered
later on.

DEEP-SEA - 955606 34 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

• Memory management optimisation pipeline Continuing from the previous cycle, the outputs
of the Extrae profiler are fed to the Heterogeneous Memory Advisor (HMem Advisor) to decide
the final destination of the allocation, leveraging different allocation calls. This is also not of
high priority at the moment but will be considered later on.

• Multi-level simulation approach This cycle may allow for further insights in performance
analysis and optimisation of a heterogeneous memory system, which is relevant for TSMP.
From our point-of-view, a combination of using Extrae, PROFET, Paraver, and Dimemas may
be more compatible than MUSA. The BSC software stack is application behaviour-oriented
not syntactic or semantic oriented. Although it is not possible for developers to act in real-
time on mapping the delays or imbalances to the related functions or part of the code, the
performance analysis which collects many computations and MPI parameters seems enough
and comprehensive. This is currently not of high priority, and will be re-assessed in the future.

• Analysis of data transfers and memory behaviour This cycle is not a priority for TSMP.
Nonetheless, identifying potential bottlenecks from collected memory analysis samples may
offer further possible optimisation. This will be addressed, if time allows.

• Analysis and debugging of MPI-RMA communications RMA is not currently implemented
in TSMP. Its implementation in the component models is not foreseen. However, it may be
of interest for inter-component communications (i.e., exchanging information between model
components), in which case this cycle will be of interest to optimize the use of RMA. This is not
currently a priority and will only be addressed if time allows.

8.3. Collaborations

• WP1 A strong internal collaboration was initiated within WP1 in order to set up the JUBE
benchmarking workflows, as reported in Deliverable 1.2.

• WP2 Ongoing collaborations with WP2 are in place, concerning monitoring, profiling and tracing
tools. TSMP is already using Score-P and Scalasca, and we are in the process of implementing
workflows with Extrae and Paraver. We expect to have a more intense collaboration when
attempting to monitor and instrument modular jobs (so far only heterogeneous jobs have been
tested in the JUWELS system). The initial setup and use of selected elements in the software
stack and their integration with TSMP is our first priority. the interoperability and composability
of the MSA-related optimisation and the detailed acquisitive analysis reports extracted from the
multi-level simulation approach is the second plan.

• WP3 We currently plan to collaborate with WP3 (and WP4) in the continuous integration tasks
seeking to leverage on GitLab runners for automated deployment of TSMP on the DEEP
prototype, leveraging also on similar plans for automated building and deployment of the DEEP-
SEA software stack. This will also require deploying TSMP through virtual machines. We will
continue to follow discussions and developments in WP3, in particular those which integrate
the SLURM scheduler and malleability.

• WP4 We will continue to follow the developments in WP4, on future automatic load-balancing
between multiple MPI+OpenMP processes in WP4, task-based performance models, and

DEEP-SEA - 955606 35 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

specifically data placement and flow (T4.1) performance models (T4.2) which may contribute to
simplify the analysis of TSMP’s inter-component data transfers and memory behaviour.

• WP5 in the immediate future we will initiate interactions with WP5 around moldability and
malleability support. We expect this will require intense exchange, early on to gauge expectation
of what is feasible and assess the workload. Later on, intense collaboration will be necessary to
implement malleability with TSMP. Additionally, we will continue to follow developments in WP5
about allocation control deliverables as the future solutions of resources orchestration of interest
for TSMP including (i) developments in ParaStation MPI towards a more generalized hierarchy
awareness with the possibility to consider different information and information sources. (ii)
Atos developments on integration of GPU communication in Open MPI hierarchical collective
communication. (iii) BSC’s developments in the PMIx Tools and the discussions between WP3
and WP5 to define the malleability support.

Importantly, TSMP offers a significant link between DEEP-SEA and IO-SEA as it participates in both
projects, with full overlap of participating members. This has already been particularly fruitful in
setting up benchmarking workflows (as describe above) which are useful for both DEEP-SEA and
IO-SEA. In these JUBE workflows the same benchmarking cases have been implemented, but of
course focusing on different benchmarking metrics.

8.4. Co-design input

• WP2 Concerning Extra-P, we must consider how processes from the multiple component
models can be mapped to processes in different computational modules without mixing them
(i.e., it is not admissible to the ParFlow processes and run half in a CPU cluster module and
half on a GPU module). These processes must be somehow treated as blocks in the mapping
and in the performance model. Additionally, since TSMP is theoretically capable of modular
jobs, it can be quickly used as a test bed for GPU and modular job monitoring developments in
the different tools (Score-P / Scalasca, Extrae, Paraver).

• WP3/WP5 Co-design activities regarding moldability and malleability. It is very relevant to
establish and understand and establish the implications in terms of implementation and the
levels at which it must occur (e.g., scheduler level, or in the application itself). Additionally,
the decision making workflow needs to be co-designed to address questions such as, which
malleability decisions depend on the job owner (application) and which ones depend on system
(administrator). Along the same lines, applications should be capable of specifying limits for
malleable job sizes, including (but not necessarily limited to) minimum resources and maximum
resources beyond which enlarging the job would be inefficient). At the system management
level, it is necessary to understand how will priorities within criteria be established to enforce
malleability (e.g., based on runtime, resource use efficiency, energy efficiency, rewards system
for non-priority shrunken jobs), while complying with the needs of the application.

• WP4 discuss and understand implications of task-based programming models for MPI+X
applications, asynchronous communications, etc. Assess necessary actions from TSMP side.

DEEP-SEA - 955606 36 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

8.5. Conclusion

TSMP has interest in exploring several of the solutions proposed in the DEEP-SEA software stack. In
the shortest term, the use of monitoring and tracing tools (considered within the Monitoring and MSA-
related optimisation cycles) are the most relevant, in order to build sufficient know-how, experience
and workflows that will allow to assess the modular performance of TSMP. Malleability and dynamic
resource allocations are of high interest, and are expected to require a large investment from Task
1.9 and a strong co-design and collaboration effort with WP3 and WP5. Other solutions are also
of interest, but of lower priority. Their implementation with TSMP will be continuously re-evaluated
as more insights are available from the continuous monitoring and benchmarking TSMP, and new
information is available from the solution design teams in other WPs.

DEEP-SEA - 955606 37 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

9. Summary

This Deliverable describes in detail the tools, software components, and programming model of the
applications and outlays the work being done to adapt them to the MSA.

The applications are actively working on the optimisation cycles described in D3.1 [1] to improve their
performance. Each of these applications have presented their current status and future plans for
each of the optimisation cycles and are actively collaborating with the concerned work packages. In
addition, they have identified and listed the tools from WP2-5 that are suited to their requirements.
Co-design input on the tools like parallel libraries, programming languages, data recording software,
performance analysis tools, and optimisation cycles used in the applications that may improve
their performance have been identified and are being worked on in close collaboration with the
developers.

Work on a common benchmarking framework comprising of JUBE scripts and GitLab runners, latest
I/O developments for fast writing of data files, and use of ephemeral data services to offload I/O
operations is being carried in collaboration with IO-SEA. The space weather team is collaborating
with RED-SEA to better the inter-connection technology for improved inter-module communications
in the MSA.

The applications have now clearly identified the programming paradigms and the tools suited for them
and have set up an active collaboration to exploit them to their benefit.

DEEP-SEA - 955606 38 31.03.2022

Appendices

D1.3 Applications use of DEEP-SEA software stack

A.1. Inter-workpackage and cross-SEA collaboration

Here, we describe our collaboration with different work packages of the DEEP-SEA project and with
other SEA projects i.e IO-SEA and RED-SEA. Table 1 describes the topics on which each of the WP1
tasks are collaborating with other DEEP-SEA work packages. Table 2 describes the areas on which
WP1 is collaborating with IO-SEA and RED-SEA.

Table 1.: Collaboration between WP1 tasks and other DEEP-SEA work packages.

Tasks WP2 WP3 WP4 WP5

Space Weather

Profiling studies us-
ing Extrae/Paraver and
Score-P, extrapolation
of application perfor-
mances to exascale ar-
chitectures, analysis of
memory patterns and
accesses using Mem-
Axes, and use of novel
memory stacking to
speed-up xPic. Tracing
and modelling the per-
formances of our GPU
code.

Using containers for
rapid deployment on
different systems and
for reproducibility. Op-
timisation of memory
management. Tracing
of changes and auto-
matic testing using CI.
Use of the latest MSA
scheduling strategies.

Performance anal-
ysis and improve-
ments of our paral-
lel I/O procedures.
Exploring the pos-
sible use of PIM
to accelerate ba-
sic operations in
xPic.

Updating of our
checkpoint/restart
procedures using
the new available
tools. Making
use of better data
structures in our
file systems to
reduce AI/ML I/O
bottlenecks.

Weather Fore-
casting

JUBE and perfor-
mance analysis

MPI-4 and spectral
transforms

DLB library -

Seismic Imag-
ing

Exploit monitoring and
tracing tools

Follow memory man-
agement toolchain

Look at memory
management API

GPI-Space mal-
leability

Molecular
Dynamics

JUBE implementation
and Score-P

Future collaborations
regarding Optimisation
Cycles

Using DaCe and
collaboration on
dlb

Optimizing MPI
collectives for
GROMACS

Computational
Fluid Dynamics

JUBE, Score-P, and
GitLab runners

-
Utilize DaCe for
Nek

-

Neutron Monte-
Carlo Transport

Tools and benchmark-
ing

Low-level mechanisms
for MSA

OpenMP memory-
level interface

MPI gateways and
MSA exploitation

Earth Systems
Modelling

Exploit monitoring and
tracing tools on modu-
lar jobs

GitLab runners, deploy-
ing TSMP on virtual
machines with DEEP-
SEA software stack

Task-based per-
formance models
and data place-
ment

Engage in co-
design activities
for prototype
malleability

DEEP-SEA - 955606 40 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Table 2.: Cross-SEA collaboration of WP1 with IO-SEA and RED-SEA.

IO-SEA RED-SEA

WP1

• Share a common benchmarking framework of JUBE
scripts and GitLab runners with task 1.2.

• Ongoing collaboration on Space Weather studies to
take advantage of the latest I/O developments for
fast writing of large files in xPic and for fast reading
of data from disk for the training of AI/ML methods
in AIDApy.

• Collaboration on Computational Fluid Dynamics.

• TSMP is actively collaborating with IO-SEA. Syner-
gies have already been exploited in setting up the
benchmarking workflows and cases. Plans which
involve activities in both DEEP-SEA and IO-SEA in
TSMP include making use of ephemeral data ser-
vices to offload IO operations and allow a higher
level of asynchronicity among the different compu-
tational modules in the MSA system and TSMP’s
component models.

• Space weather team collabo-
rates to better interconnection
technology in the highly paral-
lel sections of the xPic code
and on the inter-module com-
munications in the MSA.

B.2. Optimisation cycles

In this section, we describe the current status of the WP1 applications with regard to the optimisation
cycles.

: Looking at using
O : Interested

: Will try to implement/Implementing
- : No time/ after the project
N/A: Not Applicable

DEEP-SEA - 955606 41 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Table 3.: Optimisation Cycles: Expressions of Interest.

Opt. Cyc. xPic AIDApy IFS FRTM BSIT GROMACS Nek5000 PATMOS TSMP

Monitoring

MSA N/A -

Map. Tool. - N/A - O

Malleability -

Mem. Alloc. O O O

DaCe, Nablab N/A N/A N/A N/A N/A N/A N/A

Ene. Opt.

HMS O

MUSA O N/A -

Mem-Axes O - -

RMA Ana. N/A N/A N/A N/A - N/A O

DEEP-SEA - 955606 42 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

List of Acronyms and Abbreviations

A

ACE Asynchronous Constraint Execution, a pthread based task scheduler
used by the FRTM application

AFSM The All-Flash Storage Module (AFSM) is a purely flash-based storage
module of the DEEP system

AI Artificial Intelligence

AIDApy Python package for the analysis of space data developed by the AIDA
project

API An Application Programming Interface (API) allows for a software to
communicate with other software that support the same API

ACE Asynchronous Constraint Execution framework. A task based schedul-
ing system for heterogeneous architectures

B
BDGS Big Data Generator Suite efficiently generates scalable big data, such

as a petabyte (PB) scale, while employing data models to capture
and preserve the important characteristics of real data during data
generation

BN Booster Node (functional entity)

BoP Board of Partners for the DEEP-SEA project

BSC Barcelona Supercomputing Centre, Spain

BSIT Barcelona Subsurface Imaging Tools is a software platform, designed
and developed to fulfill the geophysical exploration needs for HPC
applications.

C
CI/CD Continuous Integration/Continuous Deployment (CI/CD) is an auto-

mated system for the testing, integration and deployment of software

CLM Community Land Model

CM The Cluster Module (CM) is one of the DEEP-system modules. It
consists of 50 CNs.

CN A Cluster Node (CN) consists of two high-end general-purpose CPUs

DEEP-SEA - 955606 43 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

CORDEX Coordinated Regional Climate Downscaling Experiment

COSMO Atmospheric model - Consortium for Small-scale Modelling

CPU Central Processing Unit

CUDA The Compute Unified Device Architecture is a parallel computing plat-
form as well as an API that allows for the communication with certain
types of graphics-processing units

CEA French Alternative Energies and Atomic Energy Commission, France

D
DA Data Analysis

DAM Data Analytics Module: with nodes (DN) based on general-purpose
processors, a large amount of (non-volatile) memory per core, and
support for the specific requirements of data-intensive applications

DEEP Dynamical Exascale Entry Platform (project FP7-ICT-287530)

DEEP-ER DEEP – Extended Reach (project FP7-ICT-610476)

DEEP/-ER Term used to refer jointly to the DEEP and DEEP-ER projects

DEEP-EST DEEP – Extreme Scale Technologies

DEEP-SEA DEEP – Software for Exascale Architectures

DEEP system Prototype Modular Supercomputer deployed within the DEEP-EST
project. It consist of three compute modules and two storage modules.

DN Nodes of the DAM

DaCe Data Centric Parallel Programming is a parallel programming frame-
work that takes code in Python/NumPy and other programming lan-
guages, and maps it to high-performance CPU, GPU, and FPGA pro-
grams, which can be optimized to achieve state-of-the-art.

E
EC European Commission

ESA European Space Agency

ESB Extreme Scale Booster provides an additional 75 power-efficient nodes
to the DEEP-EST Prototype, each hosting one Intel Xeon CPU and
one NVIDIA V100 GPU, to address the needs of highly scalable codes
and adapt them to the computer architectures likely to be used in the
Exascale era.

EU European Union

Exascale Computer systems or Applications, which are able to run with a perfor-
mance above 1018 Floating point operations per second

DEEP-SEA - 955606 44 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Extrae Extrae is a tool that uses different interposition mechanisms to inject
probes into the target application to gather information regarding the
application performance.

ECMWF European Centre for Medium-range Weather Forecasts, headquartered
in Reading, UK

F
FFT Fast Fourier Transform

FLOP/s FLoating-point OPeration per Second

FP7 European Commission 7th Framework Programme

FPGA Field-Programmable Gate Array, Integrated circuit to be configured by
the customer or designer after manufacturing

FRTM Fraunhofer RTM is a RTM software package developed by the Fraun-
hofer Institute for Industrial Mathematics

FWI Full Waveform Inversion (FWI) is a technique for estimating the medium
parameters inside a medium of interest by means of the adjoint method.
Obtaining gradients, the building block of FWI, is achieved by means
of wave equation modelling. In terms of application design, gradient
computation is similar to computing one FWI gradient.

G
GitLab GitLab is a platform for software development and information-

technology operations. In this project it is used to organize developed
software.

GitLab Runner A GitLab Runner is software that connects to GitLab servers for remote
execution of CI/CD tasks.

GPFS The General Parallel File System (GPFS) is an IBM developed high-
performance clustered file system

GPU Graphics Processing Unit

GROMACS A toolbox for molecular dynamics calculations providing a rich set of
calculation types, preparation and analysis tools

GASPI Global Address Space Programming Interface is a Partitioned Global
Address Space (PGAS) API. It aims at extreme scalability, high flexibility
and failure tolerance for parallel computing environments.

H
H2020 Horizon 2020

DEEP-SEA - 955606 45 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

HPC High Performance Computing

HPCG The High Performance Conjugate Gradient benchmark is a benchmark
based on a conjugate-gradient kernel

HPL The High Performance LINPACK (HPL) is a performant software pack-
age for solving linear system.

I
IB verbs The API for communication using InfiniBand (IB), a communication

hardware

IFS Integrated Forecasting System

IOR The Interleaved Or Random (IOR) benchmark is a benchmark for I/O

I/O Input/Output. May describe the respective logical function of a com-
puter system or a certain physical instantiation

IPC Instructions Per Cycle

J
JUBE The JÜlich Benchmarking Environment

JURECA JURECA (Jülich Research on Exascale Cluster Architectures) Super-
computer at FZJ

JUWELS JUWELS (Jülich Wizard for European Leadership Science) Supercom-
puter at FZJ

JSC Jülich Supercomputing Centre

K
KNL Knights Landing, second generation of Intel® Xeon Phi (TM)

KU Leuven Katholieke Universiteit Leuven, Belgium

L
LINPACK LINPACK is a software package for solving linear systems

LinkTest LinkTest is a communication-API benchmark

LLNL Lawrence Livermore National Laboratory

DEEP-SEA - 955606 46 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

M
mdtest Included with the IOR benchmark, the mdtest benchmark is for bench-

marking metadata creation

MPI Message Passing Interface, API specification typically used in parallel
programs that allows processes to communicate with one another by
sending and receiving messages

MPI-I/O MPI – Input/Output is an extentsion to MPI for I/O

MPMD Multiple-Program-Multiple-Data

MSA Modular Supercomputer Architecture

ML Machine Learning

MPDATA Multidimensional Positive Definite Advection Transport Algorithm, Smo-
larkiewicz 1988

MD Molecular Dynamics

MKL The Math Kernel Library is a mathematics library provided by Intel®

N
NASA National Aeronautics and Space Administration

NoSQL NOn relational SQL (NoSQL) databases are SQL databases that can
efficiently handle huge amounts of unstructured rapidly changing data.
NoSQL unlike SQL does not refer to a language and is generally an
adjective

NUMA Non-Uniform Memory Access

NEMO Nucleus for European Modelling of the Ocean, ocean forecasting model
used in coupled IFS forecasts

Nek5000 Nek5000 is an open-source computational fluid dynamics code based
on the spectral element method.

Nekbone Proxy app for Nek5000. It solves the standard Poisson equation using a
conjugate gradient iteration with a simple or spectral element multigrid
preconditioner on a block or linear geometry.

O
OMB The Ohio State University (OSU) MicroBenchmarks (OMB) is a suite of

MPI benchmarks that has been extended to other communication APIs

OpenMP Open Multi-Processing, Application programming interface that support
multi-platform shared memory multiprocessing

OTF2 Open Trace Format Version 2

DEEP-SEA - 955606 47 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

P
PAPADAM Proxy App to Play Around with DEEP-SEA API for MPI, ECMWF

development mini-app

ParaStation MPI ParaStation MPI is the MSA-enabled MPI library and runtime of Para-
Station Modulo. It contains a high-performance communication library
especially designed for HPC supporting different communication trans-
ports concurrently, and offers a complete process management system
integrated with the batch queuing system and job scheduler.

Paraver Paraver is a flexible performance analysis tool.

ParFlow Hydrological model

PATMOS Monte Carlo neutron transport parallel application developped by CEA

PDAF Parallel Data Assimilation Framework

PIC Particle-in-Cell algorithm.

PIM Processing In Memory

PME Particle Mesh Ewald

PMT Project Management Team of the DEEP-SEA project

Profile Recording of aggregated information, time measurements, and counts
for function calls, bytes transferred, and hardware counters.

PSM2 Performance Scaled Messaging (PSM) 2 is the second generation of
the PSM API for communication

R
RAM Random-Access Memory

RDBMS A Relational-DataBase Management System (RDBMS) is a manage-
ment system for relational databases

RDSMS A Relational-Data–Stream Management System (RDSMS) is a man-
agement system for relational data streams

RTM Reverse Time Migration (RTM) is an imaging scheme that uses two
related wavefields inside a medium of interest to image said medium.
This is commonly achieved by zero-lag cross correlating the two wave-
fields in time, even though a temporal deconvolution of the two would
be theoretically preferred. One of the used wavefields in the medium is
commonly estimated from data recorded on the surface of the medium
after wavefields were execited in the medium. The other wavefield is
often estimated using an approximation of the excitation method that
was dominantly responsible for the wavefield that was recorded on the
surface of the medium which was used to estimate the other wavefield.

DEEP-SEA - 955606 48 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

S
Score-P Scalable Performance Measurement Infrastructure for Parallel Codes.

It is a software system that provides a measurement infrastructure for
profiling, event trace recording, and online analysis of HPC applications.

SQL The Structured Query Language (SQL) is a domain-specific language
for accessing data in a RDBMS or in a RDSMS

SSSM Scalable Storage Service Module – conventional, spinning-disk-based
storage module of the DEEP system

SW Software

SDLTS Simulation and Data Laboratory Terrestrial Systems

T
TCP The Transmission Control Protocol (TCP) is one of the main communi-

cation protocols of the internet protocol

Trace Recording detailed information about significant events during execu-
tion of the program and save information using a timestamp, location,
and event type.

TSMP Terrestrial System Modelling Platform

TDFD Time-Domain Finite Difference

U
UCP The Unified Communication Protocol (UCP) is an API aimed at unifying

different communication APIs, similar in that sense to MPI

V
Vampir A framework that enables developers to quickly display and analyze

arbitrary program behavior at any level of detail.

W
WP Work package

WAM WAve Model, used in IFS forecasts to predict the ocean-atmosphere
interface

DEEP-SEA - 955606 49 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

X
x86 Family of instruction set architectures based on the Intel® 8086 CPU

Xeon Non-consumer brand of the Intel® x86 microprocessors (TM)

Xeon Phi Brand name of the Intel® x86 many-core processors (TM)

xPic eXascale ready Particle-in-Cell code for space plasma physics.

DEEP-SEA - 955606 50 31.03.2022

D1.3 Applications use of DEEP-SEA software stack

Bibliography

[1] S. Pickartz, M. Marazakis, and N. Eicker. DEEP-SEA Deliverable 3.1: Software Architecture.
Tech. rep. Nov. 2021.

[2] J. H. Meinke and A. Kreuzer. DEEP-SEA Deliverable 1.1: Initial Application Co-Design Input.
Tech. rep. July 2021.

[3] M. H. J.H. Meinke. DEEP-SEA Deliverable 1.2: Application use cases and traces. Tech. rep.
Dec. 2021.

[4] Jülich Supercomputing Centre. JUBE — Jülich Benchmarking Environment. http://www.fz-
juelich.de/jsc/jube. 2008.

[5] A. Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope, Scalasca, TAU, and Vampir”. In: Tools for High Performance Computing 2011.
Ed. by H. Brunst et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91. ISBN:
978-3-642-31475-9. DOI: 10.1007/978-3-642-31476-6_7. URL: http://link.springer.
com/10.1007/978-3-642-31476-6_7.

[6] Barcelona Supercomputing Center. Extrae. https://tools.bsc.es/paraver. 2006.

[7] Barcelona Supercomputing Center. Paraver. https://tools.bsc.es/paraver. 2001.

[8] M. Geimer et al. “The Scalasca performance toolset architecture”. In: Concurrency and compu-
tation: Practice and experience 22.6 (2010), pp. 702–719.

[9] The HDF Group. Hierarchical Data Format, version 5. https://www.hdfgroup.org/HDF5/. 1997.

[10] M. Howison et al. “H5hut: A high-performance I/O library for particle-based simulations”. In:
2010 IEEE International Conference On Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS). 2010, pp. 1–8. DOI: 10.1109/CLUSTERWKSP.2010.5613098.

[11] S. Balay et al. PETSc/TAO Users Manual. Tech. rep. ANL-21/39 - Revision 3.16. Argonne
National Laboratory, 2021.

[12] A. Collette. Python and HDF5. O’Reilly, 2013.

[13] J. Ahrens, B. Geveci, and C. Law. “Paraview: An end-user tool for large data visualization”. In:
The visualization handbook 717.8 (2005).

[14] H. Childs et al. “VisIt: An End-User Tool For Visualizing and Analyzing Very Large Data”. In:
High Performance Visualization–Enabling Extreme-Scale Scientific Insight. Oct. 2012, pp. 357–
372.

[15] V. Tsymbal and A. Kurylev. “Profiling Heterogeneous Computing Performance with VTune
Profiler”. In: International Workshop on OpenCL. IWOCL’21. Munich, Germany: Association for
Computing Machinery, 2021. ISBN: 9781450390330. DOI: 10.1145/3456669.3456678. URL:
https://doi.org/10.1145/3456669.3456678.

[16] Barcelona Supercomputing Center. Paraver. https://tools.bsc.es/dimemas. 2001.

[17] S. Potluri et al. “Efficient inter-node MPI communication using GPUDirect RDMA for InfiniBand
clusters with NVIDIA GPUs”. In: 2013 42nd International Conference on Parallel Processing.
IEEE. 2013, pp. 80–89.

DEEP-SEA - 955606 51 31.03.2022

https://doi.org/10.1007/978-3-642-31476-6_7
http://link.springer.com/10.1007/978-3-642-31476-6_7
http://link.springer.com/10.1007/978-3-642-31476-6_7
https://doi.org/10.1109/CLUSTERWKSP.2010.5613098
https://doi.org/10.1145/3456669.3456678
https://doi.org/10.1145/3456669.3456678

D1.3 Applications use of DEEP-SEA software stack

[18] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran
Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[19] F. Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of machine learning
research 12.Oct (2011), pp. 2825–2830.

[20] W. Frings, F. Wolf, and V. Petkov. “Scalable massively parallel I/O to task-local files”. In:
Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis. 2009, pp. 1–11.

[21] A. Moody et al. “Design, modeling, and evaluation of a scalable multi-level checkpointing
system”. In: SC’10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE. 2010, pp. 1–11.

[22] A. Tarantola. “Inversion of seismic reflection data in the acoustic approximation”. In: Geophysics
8 (Aug. 1984), pp. 1259–1266.

[23] M. J. Abraham et al. “GROMACS: High performance molecular simulations through multi-
level parallelism from laptops to supercomputers”. In: SoftwareX 1-2 (2015), pp. 19–25. ISSN:
2352-7110. DOI: https : / / doi . org / 10 . 1016 / j . softx . 2015 . 06 . 001. URL: https :
//www.sciencedirect.com/science/article/pii/S2352711015000059.

[24] C. Kutzner et al. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
2015.

[25] C. Kutzner et al. “More bang for your buck: Improved use of GPU nodes for GROMACS 2018”.
In: Journal of computational chemistry 40.27 (2019), pp. 2418–2431.

[26] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier. nek5000 Web page. 2008. URL: https:
//nek5000.mcs.anl.gov/.

[27] M. O. Deville, P. F. Fischer, and E. Mund. High-order methods for incompressible fluid flow.
Vol. 9. Cambridge university press, 2002.

[28] P. Shrestha et al. “A scale-consistent terrestrial systems modeling platform based on COSMO,
CLM, and ParFlow”. In: Monthly weather review 142.9 (2014), pp. 3466–3483.

[29] G. Zängl et al. “The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and
MPI-M: Description of the non-hydrostatic dynamical core”. In: Quarterly Journal of the Royal
Meteorological Society 141.687 (June 2014), pp. 563–579. DOI: 10.1002/qj.2378.

[30] A. Giménez et al. “MemAxes: Visualization and Analytics for Characterizing Complex Memory
Performance Behaviors”. In: IEEE Transactions on Visualization and Computer Graphics 24.7
(2018), pp. 2180–2193. DOI: 10.1109/TVCG.2017.2718532.

DEEP-SEA - 955606 52 31.03.2022

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/https://doi.org/10.1016/j.softx.2015.06.001
https://www.sciencedirect.com/science/article/pii/S2352711015000059
https://www.sciencedirect.com/science/article/pii/S2352711015000059
https://nek5000.mcs.anl.gov/
https://nek5000.mcs.anl.gov/
https://doi.org/10.1002/qj.2378
https://doi.org/10.1109/TVCG.2017.2718532

	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	List of Tables
	Executive Summary
	Introduction
	Space Weather
	Introduction
	Tools, software components and programming models
	Collaborations
	Co-design input
	Conclusion

	The IFS weather forecasting software
	Introduction
	Tools, software components and programming models
	Collaborations
	Co-design input
	Conclusion

	Seismic imaging
	Introduction
	Tools, SW Components & programming models
	Collaborations
	Co-design input
	Conclusion

	GROMACS: Molecular Dynamics
	Introduction
	Tools, SW Components and programming models
	Collaborations
	Co-design input
	Conclusions

	Computational Fluid Dynamics: Nek
	Tools, software components and programming models
	Collaboration
	Co-design input
	Conclusion

	Neutron Monte-Carlo Transport for Nuclear Energy
	Introduction
	Tools, software components and programming models
	Collaborations
	Co-design input
	Conclusion

	Earth System Modelling: TSMP
	Introduction
	Tools, software components and programming models
	Collaborations
	Co-design input
	Conclusion

	Summary
	Appendices
	Inter-workpackage and cross-SEA collaboration
	Optimisation cycles

	List of Acronyms and Abbreviations
	Bibliography

