
EuroHPC-01-2019

DEEP-SEA

DEEP – Software for Exascale Architectures
Grant Agreement Number: 955606

D3.1
Software Specification

Final

Version: 1.0

Author(s): S. Pickartz (ParTec), M. Marazakis (FORTH), N. Eicker (FZJ)

Contributor(s): A. Mazouz (Atos), A. Roussel (CEA), A. Geiß (TUDa), A. J. Peña (BSC),
C. Clauss (ParTec), C. Feld (FZJ), D. Chasapis (BSC), G. Llort (BSC),
I. A. Comprés Ureña (TUM), J. Jaeger (CEA), P. Lemarinier (Atos),
M. Sergent (Atos), M. Geimer (FZJ), M. Michael Ott (LRZ), M. Rauh (ParTec),
M. Owais (FHG), M. Schlütter (FZJ), P. Carpenter (BSC), P. Radojkovic (BSC),
P. Lesnicki (Atos), R. Machado (FHG), S. Lührs (FZJ), S. Vanecek (TUM),
S. Krempel (ParTec), Th. Moschny (ParTec), T. Ridley (JSC),
T. Schneider (ETHZ), V. Lopez (BSC), V. Beltran (BSC)

Date: 30.11.2021

Ref. Ares(2021)7385003 - 30/11/2021

D3.1 Software Specification

Project and Deliverable Information Sheet

DEEP-SEA Project ref. No.: 955606

Project Project Title: DEEP – Software for Exascale Architectures

Project Web Site: https://www.deep-projects.eu/

Deliverable ID: D3.1

Deliverable Nature: Report

Deliverable Level: Contractual Date of Delivery:
PU* 30.11.2021

Actual Date of Delivery:
30.11.2021

EC Project Officer: Daniel Opalka

*− The dissemination levels are indicated as follows: PU - Public, PP - Restricted to other participants
(including the Commissions Services), RE - Restricted to a group specified by the consortium (including the
Commission Services), CO - Confidential, only for members of the consortium (including the Commission
Services).

DEEP-SEA - 955606 1 30.11.2021

https://www.deep-projects.eu/

D3.1 Software Specification

Document Control Sheet

Title: Software Specification

Document ID: D3.1

Version: 1.0 Status: Final

Available at: https://www.deep-projects.eu/
Software Tool: LATEX

File(s): DEEP-SEA_D3.1_Software_Specification.pdf

Written by: S. Pickartz (ParTec), M. Marazakis (FORTH),
N. Eicker (FZJ)

Authorship Contributors: A. Mazouz (Atos), A. Roussel (CEA),
A. Geiß (TUDa), A. J. Peña (BSC),
C. Clauss (ParTec), C. Feld (FZJ),
D. Chasapis (BSC), G. Llort (BSC),
I. A. Comprés Ureña (TUM), J. Jaeger (CEA),
P. Lemarinier (Atos), M. Sergent (Atos),
M. Geimer (FZJ), M. Michael Ott (LRZ),
M. Rauh (ParTec), M. Owais (FHG),
M. Schlütter (FZJ), P. Carpenter (BSC),
P. Radojkovic (BSC), P. Lesnicki (Atos),
R. Machado (FHG), S. Lührs (FZJ),
S. Vanecek (TUM), S. Krempel (ParTec),
Th. Moschny (ParTec), T. Ridley (JSC),
T. Schneider (ETHZ), V. Lopez (BSC),
V. Beltran (BSC)

Reviewed by: T. Schneider (ETHZ)

D. Gottwald (FZJ)

Approved by: BoP/PMT

DEEP-SEA - 955606 2 30.11.2021

https://www.deep-projects.eu/

D3.1 Software Specification

Document Status Sheet

Version Date Status Comments

1.0 30.11.2021 Final version EC submission

DEEP-SEA - 955606 3 30.11.2021

D3.1 Software Specification

Document Keywords

Keywords: DEEP-SEA, HPC, Exascale, Software

Copyright notice:

© 2021 DEEP-SEA Consortium Partners. All rights reserved. This document is a project
document of the DEEP-SEA Project. All contents are reserved by default and may not be
disclosed to third parties without written consent of the DEEP-SEA partners, except as mandated
by the European Commission contract 955606 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are acknowl-
edged as own by the respective holders.

DEEP-SEA - 955606 4 30.11.2021

Acknowledgements:

The DEEP Projects have received funding from the European Commission’s FP7, H2020,
and EuroHPC Programmes, under Grant Agreements n° 287530, 610476, 754304, and
955606. The EuroHPC Joint Undertaking (JU) receives support from the European Union’s
Horizon 2020 research and innovation programme and Germany, France, Spain, Greece,
Belgium, Sweden, United Kingdom, Switzerland.

D3.1 Software Specification

Contents

Project and Deliverable Information Sheet 1

Document Control Sheet 2

Document Status Sheet 3

List of Figures 6

List of Tables 7

Executive Summary 8

1 Introduction 9
1.1 Purpose and Scope . 9

2 Software Architecture 11
2.1 The Modular Supercomputing Architecture . 11
2.2 Optimisation Cycles . 11

3 Components 14
3.1 Performance Analysis . 14
3.2 Memory Management . 24
3.3 Communication and Programming Models . 26
3.4 Resource Management, Scheduling, and Orchestration 35
3.5 Programmer Productivity . 42

4 DEEP-SEA Optimisation Cycles 49
4.1 Monitoring Optimisation Cycle . 49
4.2 MSA-related Optimisation . 50
4.3 Application Mapping Toolchain . 51
4.4 Malleable Optimisation Cycles . 52
4.5 Memory Management Optimisation Pipeline . 54
4.6 High-level Programming Interfaces Cycle . 56
4.7 Energy Optimisation . 56
4.8 Memory System Performance Analysis . 58
4.9 Multi-level Simulation Approach . 58
4.10 Analysis of Data Transfers and Memory Behaviour 60
4.11 Analysis and Debugging of MPI-RMA Communications 62

5 Conclusions 64

List of Acronyms and Abbreviations 67

Glossary 72

Bibliography 77

DEEP-SEA - 955606 5 30.11.2021

D3.1 Software Specification

List of Figures

1 Schematic Overview of an MSA System . 12
2 The High-level Overview of the DEEP-SEA Software Stack 13

3 Paraver Timelines, Profile Views, and Histogram Views 18
4 BSC’s Data Placement Framework . 24
5 The pscom Architecture . 27
6 Management of Malleable Jobs . 37
7 Dependencies Between Jobs in a Workflow . 39
8 Overview of the SDFG Representation . 43
9 Textual Output of a DaCe Instrumentation . 45
10 Different SDFG Visualisations . 45
11 NabLab IDE . 46
12 NabLab Compilation Chain . 47

13 Monitoring Optimisation Cycle . 49
14 MSA-related Application Performance Optimisation 50
15 Application Mapping Toolchain . 52
16 Malleable Online Monitor . 53
17 Memory Allocation Pipeline . 55
18 High-level Programming Interface Cycle . 57
19 Energy Optimisation Cycle . 57
20 Memory System Performance Analysis . 59
21 MUSA Optimisation Cycle . 60
22 MemAxes Optimisation Cycle . 61
23 RMA-Analyzer . 63

DEEP-SEA - 955606 6 30.11.2021

D3.1 Software Specification

List of Tables

1 List of Events Captured by the InstrumentationProvider 44

2 Co-design Application to Optimisation Cycle Matrix 66

DEEP-SEA - 955606 7 30.11.2021

D3.1 Software Specification

Executive Summary

The application diversity in HPC is continuously increasing and applications are combined to workflows
coupling different programming models. These developments put high demands on the system
software of future Exascale systems. The DEEP-SEA software stack addresses this challenge by
defining a system software architecture considering both heterogeneity throughout the hardware
landscape and dynamically changing resource requirements of the application workflows. The
software stack is especially designed to be employed on current and future HPC systems that are
built by following the design principles of the Modular Supercomputer Architecture (MSA). This way,
heterogeneity, scalability, and the dynamic assignment of resources to jobs or application workflows
can be guaranteed while enabling the flexible and efficient utilisation of future Exascale systems.

In this deliverable, we present the central components of the software stack that are extended and
enhanced in the scope of the DEEP-SEA project while covering the following major technology areas:
performance analysis, memory management, communication and programming models, resource
management and scheduling, and programmer productivity. In doing so, we introduce the concept of
optimisation cycles constituting typical workflows of application developers for the adaptation and the
optimisation of their application codes to the target platform. These optimisation cycles identify and
define the interplay of the software stack’s components and by this means specify the architecture
of this stack. This basic concept will be used to further drive the developments and to steer future
design decisions of the project. According refinements of the optimisation cycles will be presented in
future deliverables of this project.

DEEP-SEA - 955606 8 30.11.2021

D3.1 Software Specification

1 Introduction

The ever-rising diversity of application workflows coupling different programming models and codes
puts high demands on the system software of future Exascale systems. The DEEP-SEA software
stack enables the flexible and efficient utilisation of Modular Supercomputer Architecture (MSA)
systems. This goal will be achieved by defining a system software architecture taking the heterogeneity
on all levels of the platforms into account while serving the dynamically varying resource requirements
of complex application workflows. The convergence of HPC/HPDA/AI workloads is considered in
DEEP-SEA as a principal driver in the evolution of system software infrastructure and tools. The
major challenges of convergence appear to lie in combining flexibility with heterogeneity.

1.1 Purpose and Scope

This document outlines the structure and the major components required to support the vision of the
DEEP-SEA project for the European Exascale HPC software stack. It provides a decomposition of
the software architecture by introducing the central components that will be enhanced and extended
within the scope of this project. At the same time for the sake of brevity, we will ignore all components
that will be used as is even though they represent central parts of the software-stack such as the
Operating System (OS) (Linux in our case), language interpreters (e. g., Python), or compilers (e. g.,
gcc, LLVM, etc.). Since they are common in today’s HPC software-stacks, we presume them as a
general prerequisite that needs no further discussion. The second part of this presentation comprises
a discussion of the interplay of the listed components including the information flow among them. We
introduce the concept of optimisation cycles utilising the typical workflow of an application developer
to identify and describe dependencies between the components. Further decompositions of the major
components themselves will be covered in follow-up deliverables including a detailed definition of the
corresponding APIs.

This deliverable considers the following major technology areas covered by the DEEP-SEA software
architecture:

Performance Analysis The DEEP-SEA software stack will provide a wide range of tools for the
creation of both correct and expeditious programs, their execution on heterogeneous nodes
and MSA systems, and the monitoring of their efficiency. These aspects contribute to PObjs 1,
2, and 3.1,2,3

Memory management The management and use of deep and heterogeneous memory hierarchies
will be facilitated by the development of node-level memory management APIs contributing to
PObj-4.4

1PObj-1: Co-design the software- and programming environment of the upcoming European Exascale systems.
2PObj-2: Provide tools to map complex applications and non-uniform workflows onto heterogeneous and modular

computer architectures.
3PObj-3: Enhance the system software, programming paradigms, tools, and runtimes in order to extract the maximum

performance from heterogeneous computer platforms and improve performance portability.
4PObj-4: Improve the use and management of new memory technologies and the placement of data in compute

devices with deep and heterogeneous memory hierarchies.

DEEP-SEA - 955606 9 30.11.2021

D3.1 Software Specification

Communication and programming models The DEEP-SEA software stack will address hetero-
geneity on all levels of an MSA system ranging from node-level memory heterogeneity and
non-uniformity to a heterogeneous interconnect landscape. This has to be taken into account
by both the low-level communication facilities and the programming models to support a va-
riety of workloads running on top, e. g., the Open Multi-Processing (OpenMP) standard, the
Message-Passing Interface (MPI), Partitioned Global Address Space (PGAS), ML/DL, etc.

Resource management and scheduling The existing resource management and scheduling sys-
tem will be extended to support a dynamic resource utilisation on the workflow level, scalability
for large node and job counts, but also malleability inside a single job step. These aspects
contribute to PObj-3.

Programmer productivity A separation of the problem formulation from optimisations for parallel
execution, e. g., efficient data movements, enables domain scientists to focus on the description
of the actual algorithms while HPC experts may ensure their efficient execution on supercom-
puters. The DEEP-SEA software stack therefore incorporates the two high-level programming
models Data-Centric (DaCe) parallel programming and NabLab while contributing to PObj-3.
Additionally, the application deployment will be facilitated by leveraging container technologies
allowing users to provide customised environments (i. e., Bring Your Own Environment) and
supporting the reproducibility of results.

The integration process of all components is accomplished by applying Continuous Integration (CI)
techniques. This way, we ensure interoperability right from the beginning. Therefore, all project part-
ners will contribute to the central CI infrastructure being set up at Jülich Supercomputing Centre (JSC)
by providing the necessary recipes and scripts for their components.

This deliverable starts with an overview of the proposed architectural model (cf. Chap. 2) by introducing
the concept of so-called Optimisation Cycles. Chapter 3 identifies the main software components
forming the DEEP-SEA software stack. These cover the five technology areas listed above. Finally,
Chapter 4 introduces the optimisation cycles being composed of the building blocks described
before.

DEEP-SEA - 955606 10 30.11.2021

D3.1 Software Specification

2 Software Architecture

The DEEP-SEA software stack specifically targets the MSA as the aspired integration concept of the
European Exascale System. Nevertheless, most of the concepts are not restricted to MSA but are
applicable to heterogeneous HPC systems in general.

2.1 The Modular Supercomputing Architecture

An MSA system is composed of a number of distinct compute modules, each being a parallel cluster
of potentially large size. The respective hardware configuration is chosen to address the needs
of a specific kind of application or a certain part of an application. The modules are connected
through a federated high-speed network (cf. Fig. 1) and a unified software environment enabling
the distribution of individual applications across different modules. This empowers application
workflows to leverage general-purpose processors, different kinds of accelerator technologies, and
even innovative technologies, such as NAM, neuromorphic-processing, or quantum-processing
devices at the same time. Heterogeneous applications and workflows benefit substantially from this
approach since each part of a code can be executed on the most suitable platform, thus, improving
both time to solution and energy efficiency.

Today, hardware heterogeneity is employed at all levels—system, node, and package—and might
apply to at least compute and memory technologies. To facilitate the different node-level resources
for application users, the system software has to be aware of this heterogeneity and has to manage
it accordingly, e. g., data placement decisions must optimise locality in heterogeneous CPU+vector
nodes, system monitoring and performance-analysis tools have to be extended to also provide
information and guidelines for an efficient use of complex memory hierarchies.

As a consequence, the number of components (i. e., tools, libraries, run-time systems, etc.) com-
posing the system software is tremendous, resulting in a potentially very complex overall software
architecture due to the huge amount of possible mutual interactions. However, the number of
procedure models in HPC is limited and therefore reducing the actual relevant interactions of the
components significantly.

A very high-level view on the software architecture is depicted in Figure 2. More detail will be
presented along the lines of the description of the various components in Chapter 3 on the one hand
and use-case examples named optimisation cycles in Chapter 4 on the other hand.

2.2 Optimisation Cycles

We introduce the concept of Optimisation Cycles in order to represent the typical workflow of an
application developer while implementing and optimising an HPC-code covering a specific scientific
field. By this means, we can identify the software components that have to play together to optimally
support the application developer and to most efficiently utilise the given resources of an MSA system.
Implicitly, they also define the relevant interfaces in between the connected components. A more

DEEP-SEA - 955606 11 30.11.2021

D3.1 Software Specification

NFCN

CN

CN

CN

Cluster Module

BN

BN

BN

BN

BN

BN

Booster Module

AN AN AN

Data Analytics Module

SN SN

Storage Module

Figure 1: An MSA system consisting of CNs (Cluster Nodes), BNs (Booster Nodes), ANs (Data
Analytics Nodes), and SNs (Storage Nodes) within distinct modules. The modules are
connected through a Network Federation. (based on [1])

detailed definition of these interfaces will be presented in future deliverable of this project (D 2.1,
D 4.1, and D 5.1). These deliverables will also present refined work-plans for the various tasks of
WP 2, WP 3, WP 4, and WP 5.

An optimisation cycle is in-between a procedure model of an application developer in HPC and
an automatised tool workflow. It might contain manual steps and therefore commonly the human
developer is in the loop. Nevertheless, some steps might be fully automatised, and the optimisation
cycle will identify the relevant interfaces. On the long run, the target will be to automatise the
optimisation cycles as much as possible by introducing advanced techniques such as machine
learning or AI concepts. However, most of this will be beyond the scope of this project.

Optimisation cycles might describe one time actions, but usually they describe an iterative procedure,
e. g., the resulting application will be executed and benchmarked repeatedly while varying certain
parameters, data distribution, utilisation of different memory types, etc. Especially for iterative proce-
dures, a fully automatised implementation of an optimisation cycle will provide major improvement of
the application developers productivity.

The description of the interfaces between the components within a cycle will be provided in different
levels of detail depending on the individual optimisation cycle. It will always contain the type of
information to be passed from one component to the next, but the description of the actual format
might still be vague. This is due to the fact that for some components the actual requirements are
not yet fully worked out. Both, the identification of the requirements and the interfaces deduced from
them will be elaborated in the next months in the different tasks and documented in the next series of
deliverables at M 12.

To summarise, optimisation cycles are a vehicle to identify the interplay of the various (software-)com-
ponents to be utilised in the project. This way, they provide an implicit definition of the overall
architecture of the DEEP-SEA software stack.

DEEP-SEA - 955606 12 30.11.2021

D3.1 Software Specification

Eu
ro

H
PC

 P
ro

je
ct

s
on

 S
W

 In
fra

st
rc

tu
re

E
xt

er
na

l I
nt

er
na

tio
na

l (
E

C
P

/F
ug

ak
u)

 &
In

du
st

ria
l E

ffo
rts

NVRAM Accelerator CPU NIC NV-Storage
Heterogeneous & Hierarchical Hardware

Local OS Global OS

WP4 Node

WP1 Application and Math Library Test Cases

WP5 Cluster / System

Measurement Access

Node-Local
Memory

Management

Malleable MPI 5.0

Dyn. Rsrc.

OpenMP

Map/Pin

EuroHPC CoEs Projects on Applications

IO-SEA

REGALE

GASPI

GPI
Space

WP2 Tools

European Processor Initiative (EPI)

Runtime
Interactions

PMIx

Mapping

Modelling

Measuring

Monitoring
Composability

R
esiliency

Malleability

Storage
Management

Cluster OmpSs

WP3 System Software

Enhanced MPI 4.0

Au
to

m
at

ic
In

te
ra

ct
iv

e

D
yn

am
ic

St
at

ic

D
yn

am
ic

St
at

ic

RED-SEA

Figure 2: The high-level overview of the DEEP-SEA software stack. It shows both the main aspects
covered by each work package and their relation.

DEEP-SEA - 955606 13 30.11.2021

D3.1 Software Specification

3 Components

As stated previously, the DEEP-SEA software stack comprises all software components required
to meet the project’s vision of the European software stack for Exascale systems. This chapter
introduces the central components that will be enhanced and extended within this project while cover-
ing the following major technology areas: performance analysis (Sect. 3.1), memory management
(Sect. 3.2), communication and programming models (Sect. 3.3), resource management and schedul-
ing (Sect. 3.4), and programmer productivity (Sect. 3.5). As mentioned before, all components that will
be used as is (e. g., the operating system or compilers) are ignored throughout this presentation.

3.1 Performance Analysis

Performance analysis is an important part in optimising the performance of any application or system.
This section describes the different components that will be developed or extended in the DEEP-SEA
project to analyse performance. This comprises components that focus on the analysis of application
behaviour, on the monitoring and analysis of system performance and energy efficiency, and on the
mapping of applications to systems.

3.1.1 Application Analysis and Mapping

This section contains the components that are mainly concerned with optimising individual applica-
tions, including the mapping of an application to a system. It is structured into two parts, the first one
describes the components which mainly analyse an application’s communication and computational
performance. The second part describes the components that focus on the analysis of memory
behaviour, memory transfers, and processing in memory.

Analysis of Computation and Communication

A comprehensive analysis of the computational behaviour as well as the analysis of the communication
patterns used by an application is crucial for achieving scalability on supercomputers. Therefore, the
DEEP-SEA software stack enables the collection of performance data via Score-P, allowing various
tools to analyse the collected data. These tools target different analysis aspects when running HPC
codes on modular hardware and are being introduced in the following.

Score-P [2, 3] is a community-maintained instrumentation and measurement infrastructure to collect
performance data from HPC applications. It is available as open-source under the 3-clause BSD
license. Score-P is easy to use, highly scalable, and able to generate both summarising call-path
profiles and detailed event traces. By using open data formats—CUBE4 [4] for profile data and the
Open Trace Format 2 (OTF2) [5] for event traces—Score-P provides the foundation for a number of
well-established performance analysis tools. In particular, Score-P’s event traces can be manually
examined using trace visualisers [6, 7], or automatically analysed using the Scalasca Trace Tools (see

DEEP-SEA - 955606 14 30.11.2021

D3.1 Software Specification

below). Likewise, the generated call-path profiles can be explored using the Cube performance report
explorer [8] as well as TAU [9], including cross-experiment analyses using a performance database. In
addition, they serve as input for generating empirical performance models with Extra-P (see below).

To capture details of the application execution, Score-P mainly relies on instrumentation, i. e., the
insertion of “hooks” into the application code that call into the Score-P run-time libraries at important
points during the execution. This instrumentation can be added to the application executables using
compiler flags and/or standardised interfaces such as PMPI, the OpenMP, the Open Computing
Language (OpenCL), and the OpenACC tools interfaces, as well as the CUDA Profiling Tools
Interface (CUPTI) or even source-to-source translation. Score-P also provides an instrumentation
API for manually annotating the source code in case the automatically added instrumentation is not
adequate as well as an API instrumentation wrapper generator for third-party C/C++ libraries used
by the application. At run-time, the inserted hooks trigger callbacks in the Score-P measurement
libraries. The measurement system processes these events by querying the current high-resolution
timestamp, collecting event-specific data such as the number of bytes transferred, and optionally
retrieving hardware performance counter data (e. g., via perf or Performance Application Programming
Interface (PAPI) [10]). Depending on the configured measurement mode, this data is then either
summarised in a call-path profile (default) or stored in a memory buffer accumulating the event trace.
Finally, the measured data is flushed to disk for further analysis with the aforementioned tools.

While Score-P can already be used to analyse the performance of many applications running on
MSA systems, users often have to apply workarounds to bypass current limitations—which come
along with various drawbacks. These will be addressed within DEEP-SEA to improve both the ease
of use and the general applicability of Score-P. For example, we will remove the restriction that the
Score-P measurement libraries currently expect a homogeneous use of parallel programming models
in MPMD applications. Likewise, we will allow using different hardware performance counters and
low-overhead timestamp counter register timers running at different “ticks per second” rates when
using multiple MSA modules.

The Scalasca Trace Tools [11, 12] are a collection of trace-based performance analysis tools built
on top of the Score-P instrumentation and measurement infrastructure introduced above. They are
also available as open-source under the 3-clause BSD license and have been specifically designed
for use on large-scale HPC systems. A distinctive feature of the Scalasca Trace Tools is its scalable
automatic trace-analysis component, which provides the ability to identify wait states that occur,
for example, as a result of unevenly distributed workloads [13]. Besides merely identifying and
quantifying wait states in communication and synchronisation operations, the trace analyser is also
able to pinpoint their root causes as well as their impact [14]. In addition, the analyser can identify the
activities on the critical path of the target application [15], highlighting those routines which constitute
the best candidates for optimisation.

To enable the analysis of huge amounts of OTF2 event trace data that can be produced at large scales,
the Scalasca Trace Tools are designed as parallel programs requiring the same amount of resources
(i. e., the number of processes and threads) as the target application. The analysis tools employ a
parallel replay technique that re-enacts the communication and synchronisation operations performed
by the target application using operations of similar type. This effectively exploits the memory and
processing capabilities of the HPC system, and thus, is the key for achieving scalability. Finally, the

DEEP-SEA - 955606 15 30.11.2021

D3.1 Software Specification

result is written to disk as an enriched call-path profile in CUBE4 format including additional higher-
level metrics, which can be examined using the same tools (i. e., Cube, TAU ParaProf/PerfExplorer,
and Extra-P) than the run-time profiles produced by Score-P.

For the Scalasca Trace Tools, the objective for DEEP-SEA is to increase the MSA awareness of
its analysis capabilities. In particular, we will extend the analysis to distinguish between intra- and
inter-module wait states for MSA experiments, which will allow for a more in-depth understanding of
the application behaviour and can provide guidelines for an improved resource distribution. To enable
this, the Score-P measurement system needs to interact with the MSA-aware MPI implementation
ParaStation MPI and/or the resource manager to query the module each application process is
running on, and write it into the generated trace data. Finally, since MPI inter-communicators are more
frequently used in MPMD and MSA settings, we plan to implement full support for inter-communicators
throughout the whole toolchain, including measurement support in Score-P, extensions to the OTF2
trace file format, and extended analyses in the Scalasca Trace Tools.

Extra-P [16, 17] is an open-source tool available under the 3-clause BSD license for an automatic
performance-modelling to support the user in the identification of program parts that scale worse
than expected. It relies on measurements of various performance metrics at different execution
configurations to create performance models.1 All it takes to search for scalability issues, even in
full-blown codes, is to run five to six small-scale performance experiments2 per modelled parameter,
launch Extra-P, and compare the asymptotic or extrapolated performance of the worst instances
to the user’s expectations. The easiest way to gather the measurements for this is using Score-P
because Extra-P has built-in support for the call-path profiles of Score-P and the CUBE4 format.
The measurements can also be taken with any other tool and manually converted in an Extra-P
compatible file format, such as JSON or plain-text.3

Extra-P does not only generate a list of potential scalability issues but also human-readable models
for all available performance metrics, e. g., floating-point operations or bytes sent by MPI calls. These
models can be used to answer questions such as: How many MPI processes are approximately
needed to finish a specific problem of a particular size in a fixed time frame? This can already be
answered by Extra-P, however the shift to heterogeneous programming models raises new questions:
Is offloading a specific computation to the GPU worth the effort or does the additionally needed data
transfer harm the overall performance?

To answer these new questions, we will, as part of the DEEP-SEA project, work together with the
Score-P developers to improve the integration of measurements on GPUs and add support for
creating GPU performance models to Extra-P. We will also allow inputting GPU measurements using
other formats so that users are not limited to Score-P for gathering measurements from GPUs.

Based on the performance modelling, we will additionally create a Mapping Toolchain (cf. Sect. 4.3)
that uses Extra-P at its core to determine a suitable mapping of applications onto MSA systems.
To achieve that, we will try to incorporate platform-independent or execution-device–independent
metrics such as the number of floating-point operations. We will use a description of the system and

1A performance model is a formula expressing a performance metric of interest, e. g., execution time or energy
consumption as a function of one or more execution parameters such as the size of the input problem or the number of
processors.

2It is recommended that the measurements for these experiments are repeated at least five times, to reduce variability.
3More information about the file formats and the measurement requirements is available in the Extra-P repository [17].

DEEP-SEA - 955606 16 30.11.2021

D3.1 Software Specification

its hardware as well as information on previous runs of the same application or applications with
similar performance behaviour to assist the user/runtime in optimising the fit between the application
and the underlying system.

Analysis of Memory

The performance of many scientific applications is limited by their memory utilisation due to band-
width and latency constraints. Therefore, application optimisation concerning their memory access
behaviour is crucial for achieving good scalability, especially with respect to the advent of heteroge-
neous memory and the use of distributed memory. This optimisation process is supported by the
components being introduced in the following sections.

RMA-Analyzer is a new plug-in for the PARCOACH library [18] based on a recent initial study [19]
which aims at helping developers debugging their MPI programs. MPI-RMA is a well-known dis-
tributed programming paradigm based on one-sided communications. Its properties allow for a
greater asynchronicity and computation/communication overlap than traditional message passing
mechanisms. Each process explicitly exposes an area of its local memory as accessible to other
processes to provide asynchronous, one-sided reads, writes, and updates. While MPI-RMA is
expected to greatly enhance the performance and to permit efficient implementations on multiple
platforms, it also comes with several challenges concerning memory consistency. Developers need
to handle complex memory consistency models and complex programming semantics.

In the DEEP-SEA project, we will develop a new plug-in for the PARCOACH library called RMA-
Analyzer, dedicated to the analysis of MPI-RMA programs (cf. Sect. 4.11). This plug-in enables
application developers to analyse memory consistency errors (also known as data races) during
MPI-RMA program executions. We will also support the notified RMA feature provided by Tk5.1.

Paraver is a very flexible data browser [20, 21] that is part of the Barcelona Supercomputing
Centre (BSC)-Tools toolkit [22], available open-source under GNU LGPL v2.1 license. Paraver
enables the analyst to create time-line views, profiles, and histograms (cf. Fig. 3) while displaying a
huge number of metrics based on the available data. The metrics in Paraver are customisable by the
user based on a filter module, a large set of time functions, and a mechanism to combine multiple
timelines. The statistics can be computed over any selected region and correlate the information
with up to three different time functions. To capture the expert’s knowledge, any view or set of views
can be saved as a Paraver configuration file that can be simply reloaded to repeat the analysis, to
conduct multi-experiment comparisons, or to apply the same views to different applications.

The input data format for Paraver is a timestamped trace of events, states, and communications. This
is an open format that is very simple to generate by other tools, following the guidelines described
in the Paraver trace-file description manual [23], to take advantage of the powerful data navigation
capabilities of Paraver. For parallel applications, the traces are usually generated by Extrae, the
instrumentation package included in the BSC-Tools. A common optimisation cycle with Paraver
also includes Dimemas [24] (cf. Sect. 4.9), an MPI network simulator that replays a Paraver trace
and predicts the behaviour with respect to different network characteristics to be compared with the
original run. The key features of Paraver can be summarised as follows:

DEEP-SEA - 955606 17 30.11.2021

D3.1 Software Specification

(a) (b)

(c) (d)

Figure 3: Different views in the Paraver data browser: (a) MPI calls timeline, (b) computation duration
timeline, (c) MPI calls profile, and (d) histogram of the computation duration with average
Instructions Per Cycle (IPC).

• Detailed quantitative analysis of program performance

• Concurrent comparative analysis of several traces

• Highly customisable visualisation options

• Building of derived metrics combining multiple views

• Cooperative work, save your current session to continue later or share views with others

Extrae is the instrumentation package [25] from the BSC-Tools that transparently collects perfor-
mance data during the program execution and generates trace files for Paraver, and is also available
open-source under GNU LGPL v2.1 license. Extrae can use several mechanisms to capture the
information, ranging from static linking to dynamic binary instrumentation of unmodified executables.
The most straightforward and preferred methods is the LD_PRELOAD interposition for an interception of
production binaries at loading time.

The data collected by Extrae includes entry and exit to the programming model runtime, hardware
counters through the PAPI library, call-stack references, periodic samples, system calls, user functions,
and punctual user events. Focusing on the activity of the parallel runtime guarantees a minimal
overhead in most scenarios, given that the application’s use of the parallel runtime is not excessively
fine-grained.

Extrae already supports common programming models, namely MPI, OpenMP, pthreads, OmpSs,
OpenCL, and Compute Unified Device Architecture (CUDA), and keeps adding new interfaces such
as OpenACC and Global Address Space Programming Interface (GASPI). It supports programs
written in C, Fortran, Java, and Python, as well as combinations of different languages, hybrid and
modular codes. It is available for most UNIX-based operating systems, and has been deployed in

DEEP-SEA - 955606 18 30.11.2021

D3.1 Software Specification

all relevant HPC architectures and platforms, including x86-64, ARM, ARM64, POWER, RISC-V,
SPARC64, BlueGene, Cray, and many HPC accelerators.

PROFET (PROFiling-based EsTimation of performance and energy) [26] is an analytical model
that predicts how an application’s performance, power and energy consumption would change when it
is executed on a new memory system. The method is based on the instrumentation of an application
running on actual hardware. The application instrumentation is currently done with the LIKWID
performance tools. This way, it already takes microarchitectural details of the CPU into account such
as the real (and not publicly disclosed) data prefetcher and out-of-order engine.

The PROFET model is originally evaluated on two actual platforms: Sandy Bridge-EP E5-2670
with four Dynamic Random Access Memory (DRAM) configurations DDR3-800/1066/1333/1600,
and Knights Landing (KNL) Xeon Phi with DDR4 and 3D-stacked MCDRAM. In the context of the
DEEP-SEA project, PROFET will be enhanced to model high-end HPC servers (e. g., Intel Cascade
architectures) connected to DDR4 and Optane DIMMs. The model accuracy will be evaluated by
comparing to measurements on actual hardware platforms.

The MUlti-level Simulation Approach (MUSA) [27] is a simulation methodology that uses traces
to enable large-scale simulations with different communication networks, numbers of cores per node,
and microarchitectural parameters. MUSA can simulate both intra-node and inter-node behaviour
and employs two main components:

• a tracing infrastructure that captures communication, computation, and runtime system events;
and

• a simulation infrastructure that uses these traces for simulation at multiple levels (e. g., CPU,
node, network, scheduling, and synchronisation).

HPC applications stress a system at multiple levels, including both the hardware and the software.
Using a single simulation approach across all levels would be too rigid to adapt to the degree of
detail appropriate for each level. For this reason, MUSA’s simulation infrastructure is capable of
changing the level of simulation detail, from cycle-accurate microarchitectural simulations to high-level
analytical models. The methodology enables the combination of detailed (higher computational cost)
and high-level (higher simulation speed) simulations, enabling simulation of large-scale machines
with thousands of cores in a reasonable amount of computational time, while guaranteeing a high
degree of accuracy. BSC’s MUSA implementation integrates two different simulators; Dimemas [24]
for simulating MPI/network and TaskSim [28] architectural simulator for simulating OpenMP/OmpSs
events and detailed instructions.

MUSA’s underlying simulator infrastructure can perform simulations either in burst or detailed mode,
which allow from faster than native simulation speeds to slower but more detailed design space
exploration studies respectively. MUSA also relies on analytical methods such as sampling for an
identification of representative code segments/phases. At node level, MUSA needs to select which
MPI ranks will be simulated in detailed mode. Periodic sampling is the default policy, which means
that one out of every 𝑁 ranks is chosen. At computation level, sampling is used to find iterative
patterns and synchronisation points. These representative segments are to be simulated in detailed
mode and their results are used to fast-forward other phases while the remainder of the application

DEEP-SEA - 955606 19 30.11.2021

D3.1 Software Specification

is simulated in burst mode. MUSA can help system designers to assess the usefulness of future
technologies in next-generation HPC machines, at a fraction of native execution time (with an error of
10 % in the common case).

The target HPC systems of the DEEP-SEA project, such as the EPI, feature vector processors and
accelerators. Irregular memory access patterns (e. g., strides) of vector load instructions, can have a
significant impact on performance. Traditional memory prefetchers may be ineffective and alternatives
such as cache bypassing may be preferable. Moreover, accelerators may have their own memory
subsystem, creating an ecosystem of different memory technologies with heterogeneous latency and
bandwidth specifications. Therefore, applications can have radically different performance on these
architectures, compared to conventional scalar systems with uniform shared memories. Both the
software and the hardware have very large parameter spaces that can be tuned to optimise perfor-
mance (e. g., task scheduling and load balancing, memory allocation, vector length management,
etc.). Exploring all these different configurations is very time and resource consuming. MUSA adds a
simulation-based methodology to the DEEP-SEA software stack which allows for faster than native
execution simulations, suitable for tuning large parameter spaces. In the context of the DEEP-SEA
project, we plan to extend MUSA’s vector engine and add support for heterogeneous memory. With
these two new subsystem models implemented, MUSA users can both evaluate their application
implementation on a given architecture and/or guide the architectural parameters of a system in
design (cf. Sect. 4.9).

Simulation of processing in memory (PIM) will be performed with the enhanced ZSim CPU
simulator [29]. Initially, ZSim was developed to simulate the Intel Westmere microarchitecture
(released in 2008), and it was recently upgraded by the BSC to simulate the Skylake microarchitecture.
To accurately model Intel Xeon Platinum 8160 processor, we performed significant enhancements
in the ZSim pipeline, cache hierarchy, and main memory interface. For a detailed and accurate
main memory simulation, we integrated ZSim with the DRAMsim3 [30] cycle accurate main memory
simulator. DRAMsim3 models DDR4, LPDDR4, GDDR6, HBM, and STT-MRAM standards; its DDR4
timings are validated against manufacturer Verilog models [30].

The simulation infrastructure is evaluated against the actual hardware comprising Intel Xeon Plat-
inum 8160 processor connected to six DDR4-2666 channels. The CPU pipeline is validated by 407
synthetic benchmarks, covering almost all instructions included in the ISA of the Intel Xeon Platinum
8160 processor. Different version of the synthetic benchmarks test in-order and out-of-order execution.
Cache hierarchy and main memory latency is validated with lmbench. Finally, the infrastructure is
evaluated by using SPEC CPU2006 and multithreaded SPLASH-2 benchmarks.

MemAxes is a tool for analysis and visualisation of memory movements within a system with the
goal to provide hints to developers on a suboptimal memory access behaviour of their application.
MemAxes works closely together with the Mitos project [31]; Mitos is present during the application
runtime and collects the application’s data regarding data movements in the system, and MemAxes
uses the collected data and analyses and visualises them.

The collected data on the CPUs are memory samples. Mitos configures the CPU to (randomly) select
and capture memory operations, and stores the observed values/properties, such as load latency,
issuing core, virtual address of the instruction that triggered the memory operation, or the information

DEEP-SEA - 955606 20 30.11.2021

D3.1 Software Specification

about which cache level satisfied the operation. The address information is used to link the memory
operations with the application source code, i. e., to determine which line of code and/or variable is
responsible for a particular memory operation. Mitos currently only works on Intel CPUs as it relies
on Intel-specific PEBS (Processor Event-Based Sampling) sampling. AMD CPUs offer so-called
IBS (Instruction Based Sampling), which may enable extending Mitos’s support to AMD CPUs. The
support for non-Intel CPUs will be further researched.

Apart from that, we also plan to analyse possibilities of collecting complementary data to memory
samples on CPUs. Other kind of information, such as aggregate data regarding overall cache and
memory usage, could complement the original fine-grained memory sample mechanism. Such
additional information could provide useful information to the developer regarding overall resource
limits.

The MemAxes tool visualises the collected data enabling the developer to identify potential bottlenecks
with respect to memory operations in their application code. The data is analysed in multiple ways
resulting in different views on the raw data and the hardware presented by MemAxes. The most
prominent view maps the collected samples on the hardware (cores, caches, NUMA regions). Other
views show the origin of the samples in the source code or their distribution in time or across the
address space, to name a few examples. The views and the dataset can be adjusted (filtered), so
that the developer gets the desired set of data that stresses the suboptimal behaviour. The mapping
between the memory samples and the source code assists the developer in identifying the critical
source code sections that need to be adjusted.

In the scope of the DEEP-SEA project, we plan to review the current concepts and the implementation
of MemAxes, and to extend its support towards modern heterogeneous hardware systems that
contain multiple CPUs and GPUs. At the beginning of the project, MemAxes was still in an early stage
of development, and not all of its functionality was stable or working at all. Therefore, some parts had
to be refactored or reimplemented in the first months of this project, and further functionalities will be
updated in the future as well. These issues include, for example, not working source code attribution
or proper setting up of memory sampling procedure for different hardware architectures. The most
important issues were already solved, so that MemAxes can be further extended.

MemAxes will be extended to support interactive modelling that enables changing application and/or
system parameters. The performance analysis will be updated to present the expected behaviour for
such a configuration. Technical details of this approach were not analysed yet, and will be a part of
future documentation.

3.1.2 System Analysis and Monitoring

This section introduces the system-wide components to monitor, analyse, and optimise the perfor-
mance and efficiency of the applications on the system. Furthermore, these components provide the
basis to detect potential issues in both applications and the system.

LLView [32] is a set of software components being actively developed by JSC. It enables the
monitoring of the clusters’ utilisation that are controlled by a resource manager and a scheduler
system. Furthermore, it establishes a link between performance metrics and individual jobs to provide
a job reporting interface.

DEEP-SEA - 955606 21 30.11.2021

D3.1 Software Specification

To avoid any job-specific instrumentation, LLView aggregates metrics of different existing sources
such as information provided by the resource manager, available daemons, or other metrics which are
gathered on a system-wide scale. This way, LLView neither has a measurable impact on the individual
application performance nor conflicts with user-side instrumentation. At JSC, the LLView-based job
reporting is automatically active for all jobs, on all larger systems, with no limitation on the job size.
The metrics, such as load, memory consumption, I/O, GPU, or network utilisation are gathered once
per minute.

LLView provides two different interfaces towards the end user: (1) a Perl-based, configurable client
covering a global view of the current scheduler and resource situation on a specific system; and (2) a
web client offering access to the gathered job metric information. Here, all metrics are pre-processed
and stored for three weeks on the web server, while the visualisation is done by the web client. The
platform enables a role-based access to restrict users to their own jobs while also allowing project
coordinators or site supports to access job reports of their user groups. Finally, for each job a job
report in PDF format covering a visual representation of all gathered metrics over time is created and
available for download.

In DEEP-SEA, the capabilities of LLView are improved by connecting it to the DCDB-based monitoring
infrastructure on the DEEP-SEA prototype system, providing access to new metrics in the job reports
such as performance counters (e. g., cache misses) or energy information of different components.
In addition, the modular system approach is taken into account by developing a mechanism for the
connection and visualisation of modular jobs in the system. Currently, each individual job part utilising
its own part of the modular system is listed separately by LLview, but no automatic connection is
generated to link all these parts together within the web frontend or the PDF reports.

Bull Dynamic Performance Optimizer (BDPO) [33] is a lightweight system-wide tool minimising
the energy consumption in HPC computing environments. BDPO is intended to be deployed on each
compute node in a cluster. The idea behind it is to leverage the power/performance control knobs
exposed by the hardware, and adjust them dynamically according to the application characteristics
and phases. As the process of code optimisation and tuning is tedious and complex, most of scientific
applications are lacking energy-optimisation awareness. Consequently, naive execution of these
applications ultimately leads to poor energy efficiency. To overcome this situation, BDPO aims at
providing a simple yet effective method to control energy consumption across the entire cluster.

BDPO runs in the background on each compute node involved in the execution of the considered
application. It can be started either manually by system administrators or by cluster users through an
interface built using Slurm SPANK Plug-ins. BDPO neither requires any source code modification or
annotations nor any prior knowledge of the target applications. It is a reactive Dynamic Voltage and
Frequency Scaling (DVFS) controller that minimises energy consumption while keeping performance
degradation under control. The energy consumption optimisation achieved by BDPO is twofold: On
the one hand, it can optimise the energy efficiency associated with the computational part of HPC
codes by monitoring key CPU-centric metrics (thanks to hardware performance counters such as
the number of instructions executed per cycle and the L2 to L3 cache traffic) to enforce DVFS during
memory-bound phases. On the other hand, BDPO is able to optimise the energy consumption in MPI
waiting phases related to collective routines.

DEEP-SEA - 955606 22 30.11.2021

D3.1 Software Specification

In the context of the DEEP-SEA project, we will study the impact of DVFS reconfigurations from
the performance and energy consumption savings points of view on various hardware platforms:
Intel, AMD, ARM/EPI, and to some extent GPUs. On top of that, we will extend the rule-based
decision engine of BDPO, notably to enhance and refine its optimisation capabilities and implement
auto-evaluation algorithms to avoid inefficient reconfiguration actions.

The Data Center Data Base (DCDB) [34] is a holistic, modular, and scalable monitoring solution
for HPC systems developed by LRZ. One of the design goals with DCDB has been to provide a
holistic overview over the HPC operations of a data centre—not just the IT hardware, but also the
supporting infrastructure, the system software, and the applications running on the system. DCDB’s
extensible plug-in infrastructure enables an easy integration with new system components and its
modular architecture ensures horizontal scalability (i. e., in terms of storage capacity) as well as
vertical scalability (i. e., in terms of system size).

DCDB is currently deployed on the DEEP prototype systems and provides access to a wide range of
monitoring data: system load, memory consumption, performance counters, temperatures, power
consumption, network traffic, and filesystem operations. A light-weight daemon is running on each
compute node and collects in-band monitoring data. Out-of-band monitoring data is collected by the
same daemon running on management servers that provide access to infrastructure data.

Access to DCDB’s monitoring data is provided via a Grafana frontend that allows for an easy
visualisation with a well-established tool. Data can also be queried via command line tools and
a shared library that enables the integration with third-party software. The collected data can be
accessed on a per-node basis as well as on a per-job basis where per-node metrics are aggregated
over all nodes of a job.

In DEEP-SEA, DCDB will be integrated with LLView to make its monitoring data also available as part
of the job reports. Furthermore, DCDB will be extended to provide better insights into the applications
running on the system.

The Malleable Online Monitor to assist with malleability scheduling decisions will be developed
alongside the malleability prototype. The malleability prototype will be designed around feedback and
control mechanisms, to be defined in detail later in the project. The general scheme for interaction
with the rest of the system is outlined in the Malleable Online Monitor optimisation cycle (cf. Sect. 4.4).
This Malleable Online Monitor represents a core part of the feedback mechanism. Network traffic
metrics will be monitored, such as network time, message counts and byte counts, in the initial
prototype. The selection of metrics to capture will be made during development, based on the
selected performance models and quality to overhead trade-offs. The monitor will be able to adapt to
node allocation changes of malleable applications and adjust its reports accordingly.

The data will be collected at the process level, and aggregated hierarchically through the network of
daemons until it reaches the scheduler at the Slurm controller daemon. The data will be collected
periodically and fed by the scheduler to a performance model. The output of the model will be used
by the scheduler when making malleable decisions. An initial plan for its relevant optimisation cycle is
described in Section 4.4.

DEEP-SEA - 955606 23 30.11.2021

D3.1 Software Specification

3.2 Memory Management

The management and use of deep and heterogeneous memory hierarchies will be facilitated by
different node-level memory allocation APIs. These are divided into low-level APIs performing the
actual resource acquisition on the hardware devices and high-level APIs facilitating the access to
heterogeneous memory systems from the programming models.

3.2.1 Intra-node Memory Heterogeneity

BSC is providing a software ecosystem for an automatic data placement in heterogeneous memory
systems comprising three main components (cf. Fig. 4). The Extrae profiler is used to extract infor-
mation on how the different memory objects are accessed throughout the lifetime of the application
execution. Paramedir is a post-processing tool from the Extrae package. The Heterogeneous Memory
Advisor (hmem_advisor) processes the offline profile and outputs an optimised distribution for the
target system. During runtime, the Flexible Memory Allocator (FLEXMALLOC) memory allocation
interposer intercepts regular allocation calls and translates them to allocators specific to the respective
memory subsystem. As part of the DEEP-SEA project, BSC is extending this software ecosystem by
a source-to-source compiler called HMem-S2S. This will constitute an alternative to FLEXMALLOC
to resolve translation of memory allocation calls during compile time. This way, runtime overhead can
be alleviated in specific cases involving many allocation calls.

Compiler
Toolchain

Memory
Profiler

Profile
Analyzer

Source
Code

Executable
Object

Execution
Input

Runtime
Allocator

Profile
Data

Object
Distribution

1

2
3

4

5

67

8

Extrae

HMem AdvisorFlexMalloc

Paramedir

Figure 4: Automatic, programming-model agnostic data placement framework for heterogeneous
memory systems.

Low-level memory allocation API To enable the programmatic discovery and utilisation of het-
erogeneous memory resources within an HPC node, DEEP-SEA is developing a memory allocation
framework derived from Simplified Interface to Complex Memory (SICM), which is part of the software
stack of the US Exascale project [35, 36]. A user-level memory allocation API will be developed as
part of task Tk4.1, allowing the application or higher software layers to determine the configuration
and status of the node’s memory hierarchy, i. e., enumerate the available memory classes and their
sizes, and then allocate and free regions of memory.

DEEP-SEA - 955606 24 30.11.2021

D3.1 Software Specification

The Multi-Processor Computing (MPC) NUMA-aware allocator enables the management of DRAM
memory in MPC. It is a standalone module and part of the MPC framework, that is used internally in
MPC but can also be used by other software components. In DEEP-SEA, its memory allocator will be
enhanced to allocate and free in heterogeneous memories such as HBM and PMEM.

High-level memory allocation API Although the low-level memory allocation API (forked from the
corresponding low-level API of SICM) can be called directly from the application, it is expected to be
invoked via higher-level interfaces, which support the allocation of memory subject to generalised
requirements (e. g., non-volatile, high bandwidth, etc.), enabling an automatic management of memory
hierarchy tiers. The OmpSs-2 programming model will be extended by a user-friendly API based on
the low-level memory allocation APIs, to provide hints about memory properties and data structure
placement on the memory hierarchy (e. g., NUMA, HBM, pinned memory, huge-pages, etc.). Of
particular interest is the adaptation of the OpenMP 5.0 memory management directives to take
advantage of heterogeneous memory resources. These directives are also of interest for the MPC
Allocator module, that will handle data allocations on heterogeneous memories within OpenMP, as
well as for the SICM high-level API. Finally, standard malloc/free will be supported by translating such
calls to the low-level memory allocation APIs, with automatic data placement to different memories
(via the hmem_advisor component as well as by a transparent page migration mechanism). For high-
level programming environments, utilising heterogeneous memory resources can start by identifying
allocation sites (e. g., in NumPy and DaCe), and then considering the potential benefit from direct
calls to the respective low-level memory allocation API. Moreover, the memory allocation APIs can
be utilised in the context of a memory-based optimisation cycle (cf. Sect. 4.5), by developing a
sampling-based mechanism in the Linux kernel for tracking accesses in selected memory regions.
This mechanism will provide a heatmap-style view of accesses, and will be utilised in the context
of machines of heterogeneous memory devices as input for an online controller (to be developed
within WP 4) that transparently migrates pages across memory device classes to improve overall
performance (cf. migration action in Figure 17.

TensorFlow data placement BSC is working towards a heterogeneous memory-aware TensorFlow
implementation. Two approaches are being explored in parallel: On the one hand, BSC is adapting
its domain-agnostic software ecosystem described before (cf. Fig. 4) which, in turn, will explore the
utilisation of the DEEP-SEA low-level APIs for memory allocation. Challenges include (1) just-in-
time generated code; (2) the use of Python, which comprises among others the existence of large
numbers of idle threads, forked processes, and deep software layers involving different programming
languages; and (3) overwhelmingly long executions and large datasets. On the other hand, BSC is
working on a domain-specific approach based on the existing Sentinel [37]. The aim is to compare
in-depth both approaches and, if possible, obtain the best of the two of them.

3.2.2 Interfaces

DEEP-SEA will support the standard memory allocation calls (malloc, realloc, etc.), as well as the
standard OpenMP 5.0 memory allocation directives, which applications may use for some or all of their
memory allocations. The standard memory allocation calls will be translated via FLEXMALLOC and
HMem-S2S to a variety of underlying memory allocation APIs. Currently, memkind and numa_malloc

DEEP-SEA - 955606 25 30.11.2021

D3.1 Software Specification

are included, and during the project the use of DEEP-SEA’s own memory management APIs will
be explored. At runtime, the operating system may also perform live migrations to optimise data
placements in a complementary approach.

A specialised approach is taken for OmpSs-2 applications, for which additional information is available
via integration with the Nanos6 runtime system and its dependency system. This information can be
leveraged via the new OmpSs-2 memory allocation and distribution API.

At the lowest level is the low-level memory allocation API, which is intended to be used by the higher
level components to allocate memory on the system.

3.3 Communication and Programming Models

Data exchange within a module or across modules of an MSA system requires communication among
the processes of a parallel application, with the respective communication facilities commonly being
part of the programming model. The DEEP-SEA software stack provides different programming
models for module-level and system-level programming, which, in turn, rely on low-level commu-
nication libraries as introduced in the following section. The programming models themselves are
then presented in Section 3.3.2, followed by a description of SIONlib enabling efficient file I/O for
large-scale, parallel applications (cf. Sect. 3.3.3).

3.3.1 Low-level Communication

Low-level communication in the DEEP-SEA software stack relies on two main components: the MPC
lowcomm module and the pscom library. The MPC lowcomm module is part of the MPC framework
but can also be used as a stand-alone module for third party tools. The pscom is a library that
tightly integrates into the ParaStation MPI library by implementing the ADI3 interface. They are both
especially designed for HPC systems and target high-performance communication. They both already
ship with a variety of plugins supporting different interconnects and interfaces relevant to the HPC
domain, e. g., for pscom, InfiniBand (IB) [38], UCX, Extoll [39], and Omni-Path [40], and for MPC
lowcomm module, IB and the BullSequana eXascale Interconnect (BXI) via the Portals 4 API.

The MPC lowcomm module will enable MPI communication via MPC, and also via Open MPI thanks
to the implementation of a new PML MPC component. This PML MPC component will handle internal
point-to-point communications in Open MPI and deliver them through the MPC lowcomm module,
enabling gateway support for both point-to-point and collective communication. The pscom will enable
both MPI communication via ParaStation MPI (cf. Sect. 3.5) and single address space programming
via GASPI (cf. Sect. 3.3.2). The pscom itself is divided into different software layers (cf. Fig. 5):
The hardware-independent layer facilitates the session management by enabling the establishment
of bi-directional connections between different pscom processes. The hardware-dependent layer
features a modular design that supports different communication interfaces and protocols by means
of plugins.

The session management of the pscom behaves similar to the Berkeley Socket API and distinguishes
the active connecting process and the passive listening process. Initially, both processes set up
a TCP connection that is used for negotiating the actual transport by choosing the appropriate

DEEP-SEA - 955606 26 30.11.2021

D3.1 Software Specification

pscom Interface

pscom

pscom Plugin Interface

SHM UCX PSGW· · ·

Hardware-independent

Hardware-dependent

Figure 5: The layered architecture of the pscom library featuring hardware-independent and hardware-
dependent layers.

communication plugin. In accordance with this session management model, each connection is
established explicitly and asymmetrically by means of the listen and connect calls offered by the
pscom API. This way, a fully connected graph among all processes in the initial MPI_COMM_WORLD group
of an MPI session is created. This simple approach may result in an excessive waste of resources,
i. e., 𝑛 · 𝑛−1

2 possible connections right upon session startup, although commonly only a fraction
of these connections is required during a communication session. Therefore, the pscom provides
an on-demand mechanism to overcome this waste of resources for huge MPI sessions comprising
thousands of ranks. This is achieved by implementing a lazy connect approach: the connection setup
is postponed and only triggered on occurrence of the first send request.

Scalable Session Startup

Besides considering the need for gateways between modules for the bridging of MPI payload during
the applications’ runtime, the hierarchical topology of an MSA system has to be likewise taken into
account during the startup of a job for the sake of scalability. On the one hand, this concerns the initial
establishment of the MPI payload connections. On the other hand, it also applies to the higher-level
communication infrastructure for the process and resource management.

Traditional approaches, where the communication session is initialised in an all-to-all fashion, are
no longer appropriate in large, hierarchical systems. Therefore, both the pscom library and the
MPC lowcomm module already provide an on-demand mechanism that implements lazy connection
establishment delaying the actual connection setup to the first send request posted on a particular
connection. This way, resources are only allocated to connections that are actually required by the
respective communication pattern of the application.

However, this on-demand connection establishment still entails a preceding negotiation of the actual
payload connection via a point-to-point-based TCP/IP connection. This approach suffers from a poor
scalability. Therefore, the DEEP-SEA software specification foresees at this point a mechanism that
integrates this negotiation-related initial information exchange with the topology-aware communication
infrastructure of the process manager. That way, the session startup benefits from an improved
initialisation of the required payload connection, while taking the hierarchical nature of the MSA
system into account.

DEEP-SEA - 955606 27 30.11.2021

D3.1 Software Specification

Remote Memory Access

The MSA enables various usage models of the hardware such as coarse-grained co-simulations,
where code parts are optimised to the particularities of certain modules, or workflows, which utilise
different modules one after another. In both cases, efficient communication among the computing
processes is crucial for a high application throughput in the system.

Today, basically all high-performance interconnects feature RMA technology enabling both high
communication throughput and low latencies. Commonly, the RMA capabilities are used to implement
efficient two-sided communication semantics on the application layer. However, as the systems
become more and more complex and applications evolve, other communication models have to be
offered to support the divers demands of HPC applications. Therefore, the communication interfaces
on the application layer should consider the capabilities of the underlying communication hardware
by offering appropriate one-sided communication semantics. On the one hand, this is already
available with MPI one-sided communication. On the other hand, further emerging programming
models following PGAS concepts may provide applications with even more variability regarding the
inter-process communication.

To enable full flexibility in terms of resource utilisation and communication semantics, applications
should not be tied to one programming model or the other. Therefore, the low-level communication
layer has to enable the composability of these different concepts within the same application. The
pscom library already features both message-based two-sided communication APIs and one-sided
communication APIs for RMA transfers. In the context of DEEP-SEA, the communication capabilities
of the pscom will be extended to meet the demands of the different high-level communication libraries
running above (e. g., ParaStation MPI and GASPI). This way, efficient one-sided and two-sided
inter-process communication will be possible enabling the composability of different programming
models.

Furthermore, an analysis of the execution of RMA primitives may provide insights on timing variance
across the MPI processes being co-located on the same node (e. g., identify the presence of
strugglers), and then identify opportunities for dynamic optimisation by taking into account both
node-level configuration characteristics (e. g., NUMA topology and availability of heterogeneous
memory devices) and dynamic effects (e. g., load imbalance). For primitives involving synchronisation,
the consideration of the load across nodes may prevent the assignment of a process running on
a overloaded core to the role of coordinator. The availability of heterogeneous memory resources
can also be considered for an improved performance (particularly tail-latency) of the data exchange
and coordination protocols implementing RMA primitives within a node. For example, by using a
memory allocation framework such the SICM derivative outlined in Section 3.2.1 the implementation
of MPI-RMA primitives is given the option of allocating message buffers (particularly of relatively large
sizes) on bandwidth-optimised memory devices (e. g., HBM).

MSA Gateways

The MSA adds a third level to the topology of a supercomputer by introducing the notion of modules.
This concept incorporates support for different network architectures within distinct modules. To
enable an efficient and flexible utilisation of MSA systems by the application developers, the runtime-
system of the programming environment is in charge of transparently connecting these networks.

DEEP-SEA - 955606 28 30.11.2021

D3.1 Software Specification

This way, HPC codes written for traditional supercomputers can be executed on MSA systems without
further measures. Likewise, MSA-aware extensions of the runtime system enable a gradual adaptation
of the application codes to fully leverage the benefits provided by this system architecture.

The pscom library already comes with support for transparent inter-module communication. There-
fore, it features the so-called gateway plugin. This implements network bridging for any pair of
communication transports supported by this low-level communication layer and constitutes a central
building block for MSA systems, in which heterogeneity not only affects different computing modules
but also the communication interconnects being employed.

Currently, the MPC lowcomm module does not support modular architectures. However, for the
DEEP-SEA software stack, it will be updated to support inter-module communication via gateways
where applicable. To meet the demands of the DEEP-SEA software stack, the capabilities provided by
the pscom gateway plugin will be carefully reviewed with respect to the other communication-related
developments. Especially, efficient inter-module RMA transfers will be a cornerstone for enabling
composability of different programming models. Additionally, it will be investigated whether the
interconnection of two computing modules via a third module featuring a different network technology
is a viable concept for future MSA systems. This would demand for extending the pscom’s gateway
plugin by efficient multi-hop routing.

3.3.2 Programming Models

The programming models of the DEEP-SEA software stack are mainly based on well-known and
standardised paradigms established in the HPC domain, such as MPI for system-wide parallelisation
and OpenMP/OmpSs for task-based parallelisation, supplemented by programming interfaces for
accelerators such as GPUs. In addition, however, DEEP-SEA also targets at alternative programming
models such as PGAS, to provide the necessary flexibility to meet the different requirements of
the DEEP-SEA applications. The main challenge in DEEP-SEA with respect to such different
parallelisation paradigms is not only to cover the hierarchy of MSA systems at all respective levels
with suitable programming models, but also to ensure MSA awareness within and between the models.
This will require an embedding of the models in a holistic software ecosystem, where particular
care must be taken to ensure their interoperability, their composability, and their ability for dynamic
resource sharing. The various building blocks of such a hierarchical infrastructure of nested and
interacting programming models, as envisioned in DEEP-SEA, are described in more detail below.

OmpSs-2 programming model

OmpSs-2 [41] is the second generation of BSC’s task-based OmpSs programming model. It extends
the tasking model of OmpSs to support task nesting and fine-grained dependencies across nesting
levels, which enables effective parallelisation of applications using a top-down methodology. The
OmpSs-2 runtime system, Nanos6, will be augmented with an online monitoring infrastructure to
gather real-time information about the performance and energy consumed by application tasks. This
monitoring infrastructure will support heterogeneous nodes with a plurality of compute and memory
devices with different performance and energy characteristics. The information provided by the
monitoring infrastructure and the memory placement API (cf. Sect. 3.2) will be used to enhance the

DEEP-SEA - 955606 29 30.11.2021

D3.1 Software Specification

scheduling policies to maximise application performance and minimise overall energy consumption
by scheduling each task to the best suited available compute device and their corresponding data to
the most appropriate memory layer.

BSC’s DLB library [42, 43] is a dynamic user-transparent library that improves the load balancing
of hybrid applications and manages the number of threads, and is compatible with MPI, OpenMP,
and OmpSs. Since version 3.0, DLB includes three independent and complementary modules:
LeWI (Lend While Idle), DROM (Dynamic Resource Ownership Management), and TALP (Tracking
Application Live Performance). The integration of the OmpSs-2 runtime with DLB will be improved
based on the previous information.

Malleability and MPI Sessions

Modern architectures and applications, and in particular MSA systems, will exhibit a far greater need
for flexibility in terms of resources being offered and consumed. This requires applications and/or
workflow frameworks to be adjusted for being able to negotiate with runtime system as well as to take
adjustments based on runtime decisions. This concept, typically referred to as malleability, will be
crucial for the success of modern HPC systems.

Current programming models provide little support for malleability, either at the module or the system
level. For example, although the MPI standard already supports a dynamic process model since
MPI-2, this has been difficult to match with the requirements of applications on the one hand, and
the constraints of resource management and scheduling on the other hand. Because of these
reasons, this feature of the MPI standard has been defined as optional, and most (if not all) compute
centres have it disabled in both the MPI runtime system and the workload manager. The need for
an updated dynamic processes API for MPI has been accepted by the MPI Forum, and is currently
being addressed in the Sessions Working Group (WG).

The recently published MPI-4 standard introduces (among other things) the new concept of MPI
Sessions offering a more flexible model for the initialisation, the creation, and the management
of processes. However, in its current form, all MPI sessions remain static and lack concepts for
mutability, but nevertheless lend themselves well to dynamic extensions.

The MPI Sessions WG is working on a proposal for malleability extensions. These efforts are in
an early stage, and it is unlikely that a proposal will be ready by the M18 deadline of D5.2 (the
malleability prototype). Members of DEEP-SEA are actively involved in the MPI Forum and its
Sessions WG. The malleable system software prototype from DEEP-SEA will be offered as one
of the available experimental platforms to demonstrate and validate malleable MPI Sessions API
proposals for the forum. Support for malleability will be implemented in an adaptable and flexible
way, allowing for the adjustment to different styles of APIs, that may become the outcome of the
MPI Forum’s standardisation activities. Malleability support requires vertical changes to the software
stack, involving most system software components, such as the scheduler and process management
daemons, as well as runtime systems, tools and applications.

In DEEP-SEA, the interfaces required to support malleability will be defined using the new MPI
Session concept as well as the interfaces for negotiating resources during runtime. The planned
prototype implementations will then demonstrate the usability of this new concept for malleability
according to the DEEP-SEA software specification. For instance, ParTec will implement the extended

DEEP-SEA - 955606 30 30.11.2021

D3.1 Software Specification

MPI Sessions concept in ParaStation MPI, but also realise the corresponding interface extensions
to its process manager. In this respect, ParaStation MPI is particularly well suited as a prototype
for these new extensions since both components (the MPI library and the process manager) are
under ParTec’s development responsibility. Nevertheless, corresponding malleability extensions are
also planned for GPI-Space, OmpSs-2cluster, and Open MPI, always also in collaboration with the
relevant standardisation bodies.

MPI Collectives and MSA Awareness

Today’s high-performance computing systems are still becoming larger and more heterogeneous.
Additionally, the modular design of MSA systems leads to ever deeper topology hierarchies. Nev-
ertheless, MPI communication is expected to be possible across all corresponding hierarchy levels,
although the crossing of a hierarchy level (e. g., via an MPI gateway between two modules) may
constitute a bottleneck in communication.

This, in turn, poses a challenge for MPI libraries, which should take such topology-related bottlenecks
into account as much as possible. This becomes especially important when performing collective
communication patterns, e. g., an optimised MPI library could try to avoid redundant communication
and to consolidate messages before crossing a change in the hierarchy levels by considering
information about nature and extent of this possible bottleneck.

In accordance with the envisaged software specification, all three MPI libraries used in DEEP-SEA
(MPC, Open MPI, and ParaStation MPI) will address this challenge in the project and provide
support for topology-aware hierarchical communication for a suitable subset of the standardised
MPI collectives. This way, MPI applications will easily be able to benefit from these optimisations
transparently without explicit modifications.

A crucial design concern for intra-node MPI collectives is node-level topology awareness, a capability
that enables the determination of the available data paths as part of a hierarchical graph and the
orchestration of more efficiently data movements. Moreover, another relevant platform capability to
leverage is XPMEM [44, 45], which enables shared address space communication between different
MPI processes that are co-located on the same node. XPMEM relies on kernel-space functionality
that allows a process to attach to memory pages initialised by another process, and benefits from
maintaining a registration cache for memory regions that are being used for MPI message payloads.
For larger messages, a single-copy data transfer scheme is used, where processes attach directly
to remote ones’ application buffers. For smaller messages, a copy-in-copy-out approach is more
beneficial, relying on the availability of pre-allocated and pre-attached message buffers, thus keeping
latency low. As part of WP 5, intra-node MPI collectives will be developed relying on the XPMEM
data exchange mechanism, avoiding data copies to improve efficiency. For large core counts, the
implementation of intra-node MPI should also consider the NUMA topology for buffer placement, as
well as dynamic effects due to load transients that affect the timing variance across the processes
participating in collective primitives.

DEEP-SEA - 955606 31 30.11.2021

D3.1 Software Specification

MSA-driven extensions/improvements/tuning to MPI

Distinct heterogeneity and the rather deep hierarchies of MSA systems make improvements and
especially fine-tuning a multi-dimensional optimisation problem that typically cannot be solved in a
simple and general way. Consequently, optimisation cycles, as they are envisioned for the overall
DEEP-SEA software specification, are also appropriate with regard to the MSA-driven extensions to
MPI.

In this regard, DEEP-SEA foresees a so-called semi-automatic tuning of selected parameters for
an MPI session. This enables an iterative improvement of these parameters for the respective
use case involving the user. So, for instance, ParaStation MPI aims at implementing such a semi-
automatic adjustment with respect to gateway configurations, in which feedback information, user
hints, and runtime measurements are combined. In this way, on the one hand, a user-specified
resource allocation (e. g., selected number of gateway nodes) and, on the other hand, an adapted
communication handling (e. g., mapping of collective patterns) by the MPI library should become
possible.

Notified RMA, an extension to MPI RMA

MPI includes an RMA interface. This API enables applications to perform RMA operations, or
one-sided communications, avoiding that both the sender and the receiver process to participate
in the actual data transfer. While different models of RMA operations co-exist within MPI, none
enables a receiver to detect if a communication was completed without introducing a synchronisation
between the two processes involved. This lack of notification of operation completion without
synchronisation impairs the latency of RMA operations. Notified RMA [46] has been proposed as
a possible solution to this issue enabling a completion notification without explicit synchronisation.
While a first functional implementation has been proposed using existing MPI RMA operations to
demonstrate this concepts, the DEEP-SEA project will propose an efficient implementation within the
InfiniBand network. Furthermore, opportunities for hardware-assisted RMA operations will be explored
in the context of communication middleware, particularly the request-related event notification and
active messaging capabilities offered by the Unified Communication X (UCX) set of network APIs [47].
UCX functionality is offered in Open MPI as one of the supported implementations of the PMLs.

Programming environment for Processing In Memory (PIM)

To enable adoption of PIM technologies in production systems and applications, the community
has to develop programming environment for PIM accelerators. Our objective in the DEEP-SEA
project is to enable the programmer to interleave conventional and PIM APIs, being focused on the
desired functionality and aware of the characteristics of generic PIM devices, but with the minimum
exposure to device implementation details. We have already selected a tentative list of application
domains and PIM functionalities that will be covered in the context of the DEEP-SEA project. We also
started analysing PIM-related data structures and APIs that will be implemented in the PIM simulation
infrastructure described in Section 3.1.1.

DEEP-SEA - 955606 32 30.11.2021

D3.1 Software Specification

GPI-2

GPI-2 is an API for the development of scalable, asynchronous, and fault tolerant parallel applications.
GPI-2 implements the GASPI specification, an API specification for asynchronous communication
which leverages remote completion and one-sided RDMA-driven communication in a PGAS. GASPI
is maintained by the GASPI Forum with the aim of having a specification as a reliable, scalable, and
universal tool for the HPC community.

The key feature of GPI-2 is one-sided, nonblocking asynchronous communication with notifications
to allow synchronisation on remote completions. GPI-2 also implements common functionality to
develop parallel applications. For instance, groups (a subset of all processes) with common collective
operations. Also, atomic operations are available. Another aspect is the usage of timeouts in
all blocking functions. These can be used with potentially blocking procedures to provide failure
tolerance.

GPI-2 also implements the concept of memory segments. This is an abstraction representing any
kind of contiguous memory. Segments are globally accessible by every thread of every GASPI
process. They can be used to leverage different memory models within an application and to map
the heterogeneous memory hierarchy found in today’s modern hardware to the software layer. In
DEEP-SEA, GPI-2 will be extended to support segments for Non-Volatile Memory (NVM), adding a
layer of persistence which can then be used to build more resilient applications. Moreover, this goes
hand-in-hand with and contributes to the support of heterogeneous memory resources as put forward
by the memory management components of DEEP-SEA.

GPI-Space

GPI-Space is a task-based workflow management system for parallel applications. GPI-Space is
designed on the principle of separation between the automatic management of parallel executions and
the description of the problem-specific computational tasks and their interdependencies. It allows the
domain developers to build domain-specific workflows using their own parallelisation patterns, data
management policies, and I/O routines, while relying on the runtime system to take care of general
aspects related to scheduling, distributed memory management, and task execution. Simultaneously,
GPI-Space provides support for running legacy codes and existing domain workflows as tasks within
a higher-level workflow, thus reducing the turnover time of projects for the end user.

The coupling of applications with workflows using different programming models and guaranteeing
their interoperability is a challenge to be addressed when considering the software of future heteroge-
neous systems. MPI and GASPI are important programming models. To support the execution of
MPI and GASPI programs in GPI-Space is an important step towards addressing such challenge.
Investigating what is currently possible, the available options and to extend GPI-Space with such
support is something that the DEEP-SEA project aims to do. Another challenge is the concept
of malleability. This is very relevant when considering the MSA and a core aspect in DEEP-SEA.
Malleability requires a good integration between a programming system such as GPI-Space and
resource management. The support for dynamic resources, access and negotiation of allocations as
provided by a resource manager allows the support of malleable applications. This leads to not only
to a better utilisation of resources as well as more flexible applications. In DEEP-SEA GPI-Space

DEEP-SEA - 955606 33 30.11.2021

D3.1 Software Specification

will contribute with requirements to a malleable resource manager such as Slurm and add prototype
implementations of the defined interfaces to support dynamic resources.

OmpSs@Cluster

OmpSs is the task-based dataflow-based parallel programming model developed by BSC. OmpSs
aims to provide portability and flexibility while extracting potentially asynchronous and irregular
parallelism. The objective is to extend OpenMP with new directives to support asynchronous
parallelism and heterogeneity (devices such as GPUs, Field-Programmable Gate Arrays (FPGAs)), as
well as extending other accelerator-based APIs such as CUDA or OpenCL. The OmpSs environment
is built on top of the Mercurium source-to-source compiler (with current work to adapt LLVM) and the
Nanos++ and Nanos6 runtime systems.

All work on OmpSs@Cluster in DEEP-SEA uses the new implementation, OmpSs-2@Cluster. This is
the distributed memory variant of OmpSs-2, which provides transparent offloading of tasks among
nodes using the same directive-based programming interface as normal tasks. Multi-node scheduling
and inter-node data transfers are handled by the (newer) Nanos6 runtime system, which uses MPI for
communication of control and data messages. The application is compiled with Mercurium, exactly
as for an SMP program, and executed by using common mechanisms for starting the processes on
a cluster (e. g., mpirun) and with inter-node task offloading enabled in the nanos.conf configuration
file.

In DEEP-SEA, OmpSs@Cluster is being extended to support interoperability between tasking
using OmpSs@Cluster and MPI within the same program. The MPMD application starts a main
process on a subset of the MPI processes with additional MPI processes able to run offloaded
tasks on the same or different nodes. Large-scale decomposition is therefore done via MPI while
small-scale parallelism is done with OmpSs@Cluster. The user currently specifies which MPI
processes are visible to the application. Nanos6 will also be extended to enable malleability in
an unmodified MPI+OmpSs@Cluster program. As shown in the Malleable Optimisation Cycle (cf.
Sect. 4.4), the runtime system (Nanos6@cluster) will interface with the malleable Slurm/ParTec
process manager (‘Management of Malleable Jobs’ on page 36) and potentially the Malleable Online
Monitor (Sect. 3.1.2).

3.3.3 Buffering and caching in SIONlib

SIONlib is a library for writing and reading data from several thousands of parallel tasks into or from
one or a small number of physical files. Only the open and close functions are collective, while
file access can be performed independently. Programs that use standard IO in a process-local
way—where each parallel process writes to a different file—can be modified to replace that IO with
SIONlib. File access is then performed using SIONlib equivalents to standard C-I/O with similar
semantics to their C counterparts. SIONlib bundles this data into one or a few files to avoid sequential
bottlenecks in the filesystem, e. g., metadata contention. The process-per-file picture is maintained for
the application, so each process has access to its logical file only. This enables in-place parallelisation
for simple I/O schemes and is particularly suited for checkpoint and restart files.

DEEP-SEA - 955606 34 30.11.2021

D3.1 Software Specification

In DEEP-SEA, the utilisation of SIONlib in the software xPic (Tk1.3) will be extended. Therefore, the
library will be enhanced to decide where to store intermediate data in different levels of node local
storage hierarchy. This provides buffering and caching capabilities for more efficient I/O resulting in a
lower network contention. This is realised by using data placement hints, specified by both by the
OS and the user, alongside APIs developed in this project to optimise internal data handling during
I/O phases. In addition, SIONlib will be optimised for heterogeneous systems by modifying the I/O
forwarding layer developed in the DEEP-EST project enabling more efficient communication between
modules.

3.3.4 Interfaces

Regarding communication and programming models, the focus for the interfaces is naturally on the
APIs of the respective parallelisation paradigms and their incarnations in the form of communication
library and runtime environment. In terms of MSA support, these (mostly standardised) interfaces can
either support topology-aware or hierarchy-aware programming to a certain degree already, or they
will be extended by these capabilities during the DEEP-SEA project. Such standardised interfaces
are often quite generic and have to be semantically substantiated with meaningful identifiers and
information in the context of a specific system architecture in a first step.

Apart from such generic interfaces, there will be interface extensions in the project that go beyond
present standards. Such new APIs and/or extensions thereof, however, can still find wide acceptance
if they are successful and/or even standardised in the end.

Besides the interfaces at the application programming level, the interfaces at the system software
level are also of particular relevance for accommodating the structures of an MSA system. Here,
especially the resource management has a global view of these structures, so that the interfaces
to and communication between the local instances of the process manager are also of significant
importance. The corresponding information exchange concerns both the higher-level libraries of
the programming models and their lower-level communication substrates. However, interfaces are,
of course, also provided between these subcomponents and the higher layers of the programming
models for conducting the high-performance payload communication of the parallel processes during
runtime.

In addition to all these interfaces within the software stack, there is naturally also the matter of the
interfaces to the user, for example, regarding the look and feel of command-line tools and their
parameters and/or the runtime steering via environment variables. A further aspect of an indirect
user interface is the employment of analysis tools. Even if the direct interfaces between the user and
such tools do not necessarily belong to the context of communication and programming model, at the
system level, the interfaces between the tools and the runtime environment are directly related to the
components described before.

3.4 Resource Management, Scheduling, and Orchestration

New features for components of the software stack that are responsible for resource management,
scheduling, and orchestration will be developed in the DEEP-SEA project. Resource management

DEEP-SEA - 955606 35 30.11.2021

D3.1 Software Specification

components, such as the slurmd and slurmstepd, as well as the ParaStation Management daemons,
will be updated to respond and adapt to node allocation updates related to malleable jobs. The Slurm
backfill scheduler will be updated with new heuristics to enable support for workflow phases with
inter-dependencies. Additional implementation efforts will enable the inclusion of GPU slices as part
of allocations. The batch script format will be extended to include data staging directives, so that this
can be automated by the infrastructure. These and other new features will be described in detail in
this section.

3.4.1 Resource Management

Resource managers for HPC systems are typically implemented as a collection of daemons that
reside on compute nodes. In the DEEP-SEA project, new features will be developed for the Slurm and
the ParaStation Management daemons. These will improve MSA support and enable malleability.

Management of Malleable Jobs

A job is called malleable if the applications it runs are able to adapt themselves to changing allocations.
To take advantage of this capability, interactions between the resource management (Slurm Scheduler
and RM), the process management (Slurm process manager or psmgmt+psslurm) and applications
are required. This interaction is shown in detail in the Malleable Optimisation Cycles (cf. Sect. 4.4).
In particular, the resource and process management need to be able to trigger and handle resizing
of jobs at runtime. In general, there are two ways to initiate such resizing: (1) scheduler-driven or
(2) job-driven. The scheduler can initiate malleability operations to optimise a global system metrics,
such as the overall energy efficiency. These scheduler decisions take into account the system state,
such as occupied nodes in the topology and the job queue. Malleability operations can also be
initiated by an application in a job to request additional or release resources depending on its current
computational efficiency. As depicted in Figure 6, these two cases only slightly differ from the resource
and process management point of view. Both cases demand for an event-based messaging facility
among the resource management, the process management, and the applications in the job.

The PMIx standard defines an event notification system providing an asynchronous out-of-band
mechanism for communicating events between application processes and the process management
system. This mechanism can be used to implement the notifications needed to trigger and coordinate
allocation resizing operations for malleable applications.

ParaStation Management will be extended to fully support the PMIx notification management system
for interactions with application processes. Matching PMIx functionality will be developed for the
different runtime systems covered in DEEP-SEA: OmpSs, GPI-2, GPI-Space, ParaStation MPI and
Open MPI. Additionally, the ParaStation manager will be extended with notification capabilities
towards the scheduler and other components. The Slurm daemons will be updated similarly.

DEEP-SEA - 955606 36 30.11.2021

D3.1 Software Specification

Figure 6: The communication and notification required to shrink or grow a malleable job triggered by
the scheduler or by the job itself. There is only little difference between the latter two cases
and that an asynchronous event system as the one specified by PMIx would be suitable for
the implementation.

DEEP-SEA - 955606 37 30.11.2021

D3.1 Software Specification

3.4.2 Job and Workflow Scheduling

Slurm backfill scheduler

When the term scheduler is mentioned in this document, it refers specifically to the Slurm backfill
scheduler. Slurm schedulers are loaded as plugins. Currently, only the built-in and backfill schedulers
are available.

DEEP-SEA scheduling-related research will be performed as new features or extensions to the Slurm
backfill scheduler. This scheduler implements the heuristic most often used by supercomputing
workload managers today: priority-based FIFO batch scheduling, with backfilling support (as the
name implies). Updates to this existing heuristic will be necessary during research efforts related to
MSA features, workflows, and malleability support.

The scheduler scans the job queue that is populated mainly by the squeue command. Each job entry
contains the requirements of the job. The job entries are ordered based on their priority; jobs at
the beginning of the queue are to be scheduled first. If resources are available, the job is started
immediately. If this is not the case, a reservation is created and the job is held in the queue until it
can start.

At job start time, the set of slurmd daemons running on the nodes of the job’s allocation are notified
and access controls are configured. A process to run the batch script of the job is forked at the
first node of the allocation. The body of the batch scripts of multi-node jobs usually contain calls
to the srun launcher. Each call to the srun launcher creates one or more job-steps. These can be
made in sequence or in parallel, and can run concurrently if there are available idle resources in the
allocation.

A job-step is created via interactions of the srun launcher and relevant slurmd instances. The srun

launcher parses the requirements and instructs each slurmd to create the necessary slurmstepd

instances to fulfill the job-step requirements. Each slurmstepd instance creates the necessary
node-local processes of the job-step.

Dependencies between workflow phases

Slurm supports workflows as jobs with interdependencies that define valid start and completion
orders. The wait times between these jobs are not guaranteed. This is enough to support workflows
in which jobs exchange data through persistent storage. Overlapping of allocation times between
these jobs can be used to avoid overheads related to serialisation and file system writes.

In the DEEP-EST project Slurm was prototypically extended by a dependency type that let a job start
a specific time before the wall time of another job. This approach demands for an accurate estimation
of the jobs’ runtimes which is not feasible in all cases.

Therefore, the DEEP-SEA software stack will offer an event-driven mechanism to support the following
use case. A preceding job will be able to notify the resource and process management system when
it has reached a defined stage of its progress. This will give the scheduler information to help reduce
wait times between the two jobs, while they are being setup for their data transfers. This way, the
overlap of both jobs depends on the actual progress of the workflow step (cf. Fig. 7) and not on a

DEEP-SEA - 955606 38 30.11.2021

D3.1 Software Specification

rough estimation made by the user. In addition to this approach, malleability support will be explored
as an alternative solution to this use case.

The PMIx notification system, described above, will be used to implement these notifications from the
application towards the resource manager.

Figure 7: The evolution of the DEEP idea of dependency management in a job workflow in comparison
to the original Slurm capabilities.

A data access mechanism will be provided for data placement and its re-utilisation among stages of
HPC/HPDA workflows over node-level persistent storage (e. g., NVM). These will be partly based
on results from the EVOLVE large-scale testbeds project. Node-level NVM is to be leveraged as
a fast buffer for workflow intermediate data instead of passing all data through the cluster-wide
filesystem. Moreover, workflow stages can also be optimised to use specific memory data structures,
for instance FIFO buffers or hash-maps, instead of having to reconstruct them from regular files. This
memory-based data exchange mechanism is expected to reduce the time between the completion of
a workflow step and the initiation of a subsequent one, with the data cwflow between workflow steps
taking place over in-memory data structures rather than the underlying filesystem.

DEEP-SEA - 955606 39 30.11.2021

D3.1 Software Specification

Shared accelerators

The DEEP-SEA execution environment includes heterogeneous accelerators, each of which may
contain substantial hardware and memory resources (e. g., as in the case of a high-end GPUs, or
specialised multi-GPU appliance such as the NVIDIA DGX system [48]). From the point of view of
overall system resource utilisation, it is desirable to support fractional allocations of such accelerators,
across multiple jobs that have been allocated resources on the same node. This capability is to be
offered in a way that preserves the work submission interfaces of the Slurm resource manager and
still supports concurrent use of accelerator resources by multiple users, rather than time-sharing of
the accelerator (due to serialised exclusive access of the GPU between users) which is what currently
available sharing technologies (such as NIVDIA’s MPS server) are designed to offer. Moreover, access
to multiple shared accelerators needs to be supported for HPDA processing pipelines and combined
HPC/HPDA workflow stages. Special care is needed to preserve Slurm’s resource accounting
accuracy in the presence of fractional allocations and cooperation with other workload managers
(e. g., Kubernetes). Work in WP3 and WP4 will provide a way to share for accelerators (particularly
GPUs) across processes belonging to different jobs that have been allocated resources on the same
physical host, compatible with slurm interfaces.

3.4.3 Orchestration

Effective orchestration of the components described above is needed to support the features de-
veloped in DEEP-SEA efficiently. The coordination between components will be achieved through
extensions to the resource management infrastructure components.

A case study will be conducted on how to best enable a container-based cloud environment, managed
by Kubernetes, to access HPC resources managed by the Slurm resource manager. Moreover,
several areas of work towards enhancements to resource manager components are considered:

1. Scalability: efficient support for jobs with larger node and process counts.

2. Scheduling with improved preemption strategies: jobs starts under urgent computing scenar-
ios [49] with saving/restoring triggers for preempted jobs.

3. Data staging: accelerate workflow execution.

4. Co-scheduling: node sharing with fractional allocation of large-scale GPU accelerators.

These enhancements will improve the combination of HPC and HPDA workloads on top of the same
execution infrastructure, in the context of data-driven workloads. A case study will be conducted on
how to best enable a container-based cloud environment, managed by Kubernetes, to access HPC
resources managed by the Slurm resource manager.

Multiple runtime orchestration

MPI+OpenMP has become a common programming model combination (often referred to as hybrid)
for HPC applications. This hybrid programming model enables the expression of parallelism at
both inter-node and intra-node level, with the objective of a better resource utilisation by distributing

DEEP-SEA - 955606 40 30.11.2021

D3.1 Software Specification

computation to all available cores. Yet, due to their parallelism decomposition, some scientific
applications exhibit their best performance when executing multiple MPI+OpenMP processes on each
node.

Resource utilisation is not always optimal as some load imbalance may be observed at the OpenMP
thread level. For instance, this is the case for some particle transport simulations in which the main
computation load moves dynamically. It is also the case for Patmos [50], an application use case of
the DEEP-SEA project. To improve the load balancing and hence accelerate the computation of the
applications as transparently as possible, a finer grained orchestration of their runtime systems is
required.

The DEEP-SEA software stack will provide two mechanisms realising such an orchestration. First,
a system to address dynamic load shifting from processes to processes, implemented as a library
relying on the OMPT interface. This will enable processes to dynamically advertise their respective
loads to each other and agree on their underlying resource partitions with the goal to maximise
their utilisation. Second, a mechanism to address dynamic imbalances between the threads of each
process by momentarily making use of any unused cores that could take part of other application
processes’ load.

Dynamic load balancing for node-level malleability

The OpenMP model has been known for its fork-join model, where threads form a team of threads at
each parallel region, and then all of them join again to continue with the sequential code. This model
has numerous benefits for the programmer, but it lacks some malleability that other pure task-based
programming models offer, e. g., the number of active threads is only set when a parallel region
starts.

In the DEEP-SEA project, we will extend the OpenMP model to enable malleable applications to
be developed with it. We will also develop new features for DLB (cf. Sect. 3.3.2) to improve load
balancing in hybrid MPI+OpenMP applications.

The integration of the DLB and the OpenMP runtime systems will be improved by enhancing the
OMPT interface. The DLB library uses the OMPT interface of the OpenMP runtime to run alongside
the application as an OpenMP performance tool that can monitor and gather performance data
in real-time. It can also detect computation and communication patterns at the thread level, and
dynamically redistribute unused CPUs time-slices to other processes that have higher computational
loads.

DLB will also be improved by adding new mechanisms to analyse the load imbalance of the application
in real-time and to manage the computational resources at the node level. For example, by using the
DLB interface, an application will be able to choose to release some CPUs used for OpenMP threads
to the resource manage, if the measured parallel efficiency is under certain value.

In addition to the DLB integration, we will propose an implementation of free agent threads in the
LLVM OpenMP runtime. These free agent threads can be enabled or disabled at any time and help to
execute explicit tasks encountered in any parallel region. This feature will increase the malleability of
the programming model and DLB will be able to dynamically and transparently adjust the application
resources to mitigate load imbalances.

DEEP-SEA - 955606 41 30.11.2021

D3.1 Software Specification

3.5 Programmer Productivity

When developing HPC software, time to solution is one of the key metrics of success. Time to
solution consists of two factors: the time needed by developers to write the software and the time
required to run the software to obtain the solution. In this subsection we describe two approaches
(DaCe and NabLab) that aim at providing environments to achieve high programmer productivity
by enabling domain scientists to write code in DSLs very close to their respective domain science.
NabLab enables the writing of numerical code using LATEX formulas while DaCe offers frontends for
Python, Matlab, and ONNX. Optimisation is decoupled from the input the domain-scientists provide,
in the form of a list of transformations. This allows to separate the roles of domain scientist and
performance engineer. This is in line with programmer productivity research which identifies code
expansion as one of the key contributors of lower productivity [51]. Allowing both roles to work on
separate parts of the code keeps code expansion to a minimum.

3.5.1 High-level Programming Models

Most optimisations, including partitioning, tiling, multiple-buffering, and vectorisation, can be repre-
sented as modifications to a program’s dataflow. Thus, a key component of optimisation in modern
HPC is the explicit formulation of application data movement characteristics and making the dataflow
accessible for optimising compilers. This is in contrast to traditional programming languages as C,
where data flow analysis is hindered by aspects like aliasing. Both DaCe and NabLab make the
analysability of the applications’ dataflow a priority in their respective internal representations.

However, to qualify as a high-level programming model and to enable a high level of programmer
productivity, it is also important to provide the right degree of abstraction to the domain scientist. In
the case of DaCe, this is achieved through the provisioning of multiple frontends for different domains
(currently Python+NumPy, Octave, and ONNX in addition to an API to construct the Intermediate
Representation (IR) directly). In the case of NabLab, this is achieved by allowing users to specify
their computations in mathematical notation, similar to what they might write in LATEX.

DaCe

DaCe [52] is a development workflow where the algorithm is independently specified from its optimi-
sation by separating the computation from data movement. DaCe was shown to map applications to
a variety of hardware architectures [52], enabling both whole-program and micro-optimisations of
non-trivial scientific computing programs to state-of-the-art performance [53, 54].

At the core of DaCe lies the Stateful Dataflow multiGraph (SDFG), a nested graph-based intermediate
representation of code that enforces a separation of data movements from the control flow (cf. Fig. 8).
In the DaCe workflow, an input program written by domain scientists in various high-level languages
(Python, Octave, TensorFlow, and ONNX are supported) is used to generate one or more “baseline”
SDFGs. These SDFGs are then optimised separately from the original program by performance
engineers, via changing the schedule or mapping of the dataflow using a developer-extensible set
of graph rewriting transformations. The input code can be modified separately from the SDFG. As

DEEP-SEA - 955606 42 30.11.2021

D3.1 Software Specification

long as the same dataflow transformation chain applies to the new code, the optimised SDFG can be
used as-is, promoting a full separation of concerns between development and optimisation.

out = -4*c + n + e + s + w

A[1-t, i, j]

A

A[1-t, 1:H-1, 1:W-1]
Volume: (H-2)*(W-2)

A
A[t, 0:H, 0:W]
Volume: 5*(H-2)*(W-2)

[i=1:H-1, j=1:W-1]

[i=1:H-1, j=1:W-1]

A[t, i, j-1]A[t, i-1, j] A[t, i, j] A[t, i, j+1] A[t, i+1, j]

Map: Parametric parallelism

subgraph scope

Access to data containers

Memlet: Data movement unit

(volume, access set)

State: Control flow represented

as state machine

(s < T);

t =1-t,

s=s+1

(s == T);

s=0, t=0

Predicated State Transition

with symbolic assignments

Figure 8: An overview of the SDFG syntax. This example the different node and edge types as part
of a stencil program.

Briefly, an SDFG is a graph of multigraphs representing a state machine of parametric dataflow
graphs, where the full semantics are given in [52]. The state machine represents a program order
that is not directly determined by dataflow. It consists of states (blue, rectangular nodes) and state
transition edges. The latter are represented by symbolic, potentially data-dependent conditions that
act as predicates for the transition; zero or more symbolic expressions represent assignments to
symbol values (𝑠 and 𝑡 in Figure 8).

Each state contains a dataflow multigraph comprising data movement, computation, and parametric
parallelism. In particular, multi-dimensional Data containers registered with the SDFG are read from
or written to via Access nodes (circular nodes), whereas computations are represented by Tasklets
(octagonal nodes), which are deterministic and contain no-side effects. The data movement between
data and computation is represented by Memlets, the edges in the dataflow graph.

The dataflow construction inherently represents parallelism in SDFG states. However, in many cases
instantiating graphs containing all tasklets of large problems can be intractable, or impossible if the
sizes are parametric. For this purpose, we define Map scopes (trapezoidal nodes) to express parallel
tasks and parametric parallelism. The enclosed scope, defined as the subgraph dominated by a Map
entry and post-dominated by a corresponding Map exit, can be scheduled in parallel.

Currently, DaCe compiles to C++ code and utilises OpenMP parallel for loops to express parallelism.
In the context of DEEP-SEA we will add support for tasking. Additionally within DEEP-SEA, we added
the possibility to gather and visualise runtime information (i. e., the value of cache-misses incurred by
parts of the SDFG) (cf. Sect. 3.5.1).

DEEP-SEA - 955606 43 30.11.2021

D3.1 Software Specification

DaCe Measurement and Debugging Interface

An SDFG can be instrumented to produce a variety of useful runtime metrics such as timer events
or hardware counters. The instrumentation and reporting framework consists of three distinct
components which are discussed in the following: (1) code generation, (2) report in Trace Event
Format [55], and (3) visualisation.

During the code generation phase for SDFGs, a series of events is emitted whenever the code gener-
ator enters or exits specific SDFG elements or sections. A general purpose InstrumentationProvider

captures these events and enables the injection of additional code at these specific locations. Table 1
lists the captured events.

Event Description

on_sdfg_begin Marks the beginning of SDFG code generation

on_sdfg_end Marks the end of SDFG code generation

on_state_begin Marks the start of SDFG state code generation

on_state_end Marks the end of SDFG state code generation

on_scope_begin Called at the beginning of a scope (on generating an EntryNode)

on_scope_end Called at the end of a scope (on generating an ExitNode)

on_copy_begin Called at the beginning of generating a copy operation

on_copy_end Called at the end of generating a copy operation

on_node_begin Called at the beginning of generating a node

on_node_end Called at the end of generating a node

Table 1: The different events being captured by the InstrumentationProvider.

This general-purpose provider can be extended to generate code for capturing arbitrary metrics based
on the provided events. There are currently two predefined instrumentation providers for measuring
the execution time of individual SDFG elements based on the events mentioned above, one using
standard C++ timers for CPU, and one using GPU events. An additional predefined instrumentation
provider is available for recording performance counters using PAPI. All implementations use a report
to accumulate measured times or counters as events in main memory. These events are then dumped
to a report file once the program terminates.

Visualisation can be achieved either on the command-line with a text-based breakdown, using Chrome
Tracing to get a timeline visualisation, or on top of SDFGs with a heatmap visualisation.

The command-line utility sdprof loads a given report file and prints a detailed breakdown to the
terminal. The output is grouped by SDFG element and instrumented times are broken down by the
minimum and maximum time recorded, as well as their mean and median values (cf. Fig. 9)

Through the use of the Trace Event Format, time measurements in runtime reports can be loaded
as-is into Chrome Tracing to obtain a timeline-based view (cf. Fig. 10).

The SDFG Viewer (SDFV) additionally enables the visualisation of runtime reports directly on top of
SDFGs in the form of heatmaps. The SDFV can be used as a standalone browser-based application,

DEEP-SEA - 955606 44 30.11.2021

https://github.com/spcl/dace/blob/v0.10.8/dace/codegen/instrumentation/provider.py
https://github.com/spcl/dace/blob/v0.10.8/dace/runtime/include/dace/perf/reporting.h
https://github.com/spcl/dace/blob/v0.10.8/dace/cli/sdprof.py

D3.1 Software Specification

Instrumentation report
SDFG Hash: 7ea2af8381af9d2b723dcb3f81ea044309a0c6773cbf46f050cd853c967de82d

Element Runtime (ms)

Min Mean Median Max

SDFG (0)
| State (0) 247.335 247.335 247.335 247.335
| | Node (0) 136.121 136.121 136.121 136.121
| | Node (6) 0.0 6.7384e-05 0.0 0.014
SDFG (1)
| State (0) 2.041 2.041 2.041 2.041
| | Node (0) 2.04 2.04 2.04 2.04
| | Node (1) 0.0 4.2e-05 0.0 0.002
| State (1) 108.929 108.929 108.929 108.929
| | Node (0) 108.928 108.928 108.928 108.928
| | Node (2) 0.007 0.7726304 0.734 8.279
| | Node (4) 0.0 6.7264e-05 0.0 0.01

Figure 9: Example of a textual output of a DaCe instrumentation result.

(a)

(b)

Figure 10: Chrome Tracing output for (a) the SDFG execution trace and (b) the performance data as
overlay on the SDFG.

DEEP-SEA - 955606 45 30.11.2021

D3.1 Software Specification

but is also found as a core part of the DaCe SDFG Editor4 in Visual Studio Code. Upon loading
a runtime report, the same aggregation of runtimes per SDFG element is performed as in sdprof.
The resulting values are used to generate a coloured overlay on top of the SDFG to visualise areas
of high and low runtime respectively. Tooltips on SDFG elements additionally provide the detailed
breakdown by minima, maxima, mean, and median also found in sdprof, while also reporting the total
number of events recorded for a given element.

NabLab

The NabLab software is an open-source research project. NabLab is both a numerical analysis
DSL and an Eclipse environment. As a DSL, NabLab improves applied mathematicians productivity
and enables new algorithmic developments for the construction of hierarchical and modular high-
performance scientific applications. The DSL allows the conception of multi-physics applications, and
is based on different concepts: no central main function, a multi-tasks based parallelism model, and
a hierarchical logical time-triggered scheduling. As a full-fledged environment, NabLab enables to
edit, interpret, debug specific numerical analysis sources and to generate optimised code for different
runtimes and architectures called backends. Figure 11 presents the NabLab Integrated Development
Environment (IDE).

Figure 11: The Eclipse-based NabLab IDE for editing, interpreting, debugging, and debugging specific
numerical analysis sources.

NabLab is based on the Eclipse Modeling Framework (EMF). The NabLab DSL is realised with Xtext,
a framework developed on Eclipse supporting the implementation of own grammars. Xtext allows to
offer a rich textual editor with syntax colouring, code completion, quick fixes, error detection, variable
scoping, or also type checking. A NabLab program is divided into two parts: (1) the declarations of
options, functions and variables; and (2) the definition of small unit functions called jobs. There are
different steps performed on the NabLab compilation chain (cf. Fig. 12). Firstly, numerical applications
are implemented in the NabLab language and in an Eclipse version offered by NabLab. Then, the
NabLab software will generate an IR implemented as an Ecore metamodel, a general model of
models in the EMF from which any model can be defined. Several transformation and optimisation
passes are defined on the IR. During this step, jobs are tagged with a hierarchical logical time in order

4https://marketplace.visualstudio.com/items?itemName=phschaad.sdfv

DEEP-SEA - 955606 46 30.11.2021

https://marketplace.visualstudio.com/items?itemName=phschaad.sdfv

D3.1 Software Specification

to be scheduled. Jobs with a higher logical time wait for a previous one to be finished before being
scheduled. Jobs with the same logical time are triggered in parallel. To highlight the execution flow of
the program and to detect unintended cycles, a data flow graph is computed and displayed through a
Sirius diagram. After all transformation have been realised on the IR, the NabLab software can be
compiled for different backends according to the user directions. The transformation chain, based on
the IR model, allows HPC engineers to introduce software engineering practices and performance
optimisation before the code generation. In the scope of the DEEP-SEA project, the NabLab software
will be extended to also support SDFG and SDF3 representations, which are more standardised
models used for Intermediate representation. Thanks to this support, it will then be possible for
NabLab to benefit from external optimisation passes developed for these representations. Currently,
NabLab generates multithreaded C++ for various targets: Kokkos, OpenMP, and STL based threads.
It also generates multithreaded Java code.

Figure 12: The different steps performed on the NabLab compilation chain.

3.5.2 Containerisation

An easy deployment and integration process is crucial for the efficient exploitation of future MSA
systems in the Exascale era. This can be achieved by enabling the containerisation of applications
on these systems. Container solutions allow users to provide customised software environments
that can be employed to develop and to test on workstations, as well as for the later deployment on
prototype platforms or production systems.

The first steps to add containerisation of HPC codes for the ParaStation process manager (psid) have
already been evaluated. This was done by adding prototypical support for Nvidia Pyxis. The enroot
utility is used by Pyxis to start unprivileged docker container. To support Pyxis, the psidforwarder,
which is (among other things) responsible for setting up the process environment, had to be adapted.
As a result the psidforwarder is calling Pyxis using various Slurm hooks to move the user processes
into namespaces and therefore the container environment. Based on this work, ParTec will add
support for Singularity to the ParaStation process manager.

Singularity is an open-source computer program that performs OS-level virtualisation. A Singularity
container is used to encapsulate all required software and dependencies for a workflow. By using
Singularity containers, developers can work in reproducible environments of their choice and design,
and these complete environments can be easily copied and executed on other systems and plat-
forms. Singularity is able to natively support high-performance interconnects such as IB and graphic

DEEP-SEA - 955606 47 30.11.2021

D3.1 Software Specification

accelerators. Therefore, it provides high bandwidth and low latency characteristics which is especially
important for HPC applications. Additionally, it can be integrated seamlessly into MSA environments,
since standalone singularity containers can be submitted to batch-systems such as Slurm without the
need for modifications.

DEEP-SEA - 955606 48 30.11.2021

D3.1 Software Specification

4 DEEP-SEA Optimisation Cycles

This chapter deals with the interplay of the components introduced before by presenting a set of
optimisation cycles (cf. Sect. 2.2). It starts with the presentation of the monitoring infrastructure that
serves as the entry point for further application optimisation. Subsequently, more specific optimisation
cycles are presented covering a wide range of technology areas (cf. Chap. 1).

4.1 Monitoring Optimisation Cycle

The utilisation of the monitoring infrastructure (cf. Fig. 13) is the most basic optimisation approach and
may act as an entry point to other optimisation cycles. Once the infrastructure is in place, there are
no additional steps necessary to receive monitoring details. Additionally, the monitoring infrastructure
supports the system administrators by evaluating the effect of individual application runs towards the
overall system behaviour.

Monitoring

DCDB

Job reports

N
o

d
e

 p
e

rf
o

rm
a

n
c
e

m
e

tr
ic

s

LLview

Job data

Optimisation

Human Developer

Application and system

performance modeling

MSA-related

Optimisation
...

Applied optimisations

or trigger other

optimisation cycles

Application

System administration

Historic

Performance

Data

Figure 13: The monitoring optimisation cycle. This is the most basic optimisation approach acting as
an entry point to the other optimisation cycles.

Node-level metrics are automatically gathered via DCDB and will be connected to individual user
jobs within LLview as part of the DEEP-SEA project work. Although the cycle does not include any
automatic optimisation steps, the human developer can either use the monitoring feedback to focus
on manual optimisation work or to trigger one or more of the other optimisation cycles described
in the following sections. Likewise, the monitoring infrastructure facilitates the verification of their

DEEP-SEA - 955606 49 30.11.2021

D3.1 Software Specification

outcome, i. e., it enables a high-level tracking of the individual changes made while using the other
optimisation cycles.

4.2 MSA-related Optimisation

The MSA adds a further layer to the topology of traditional supercomputers. Besides intra-node
and inter-node network traffic, there is additional inter-module communication that has to be taken
into account when adapting applications to MSA systems. The MSA-related optimisation cycle (cf.
Fig. 14) will assist application developers in identifying performance and scalability bottlenecks, and
helps them to leverage the MSA awareness provided by the ParaStation MPI runtime system. While
the basic cycle is also applicable to traditional, non-MSA setups, here we specifically target coupled
application codes utilising multiple modules concurrently.

Instrumentation/Profiling Performance Analysis/Modelling

OTF2
traces

CUBE
profiles

Runtime

Optimisation

Apply code
optimisations

Optimised execution configuration

Interactive visualisation of performance data

and performance/scalability models

Execution
within

ParaStation MPI

Application

Human
Developer

Score-P

Scalasca

Trace Tools

Extra-P

Modelling

Instrumented

application

Collect system-related metrics
via well-defined interfaces
(PMPI, PMIx, etc.)

Slurm

+

psslurm

Perform
ance/scalability m

odels

Figure 14: The MSA-related optimisation based on profiles and traces generated by Score-P. Their
analysis within the Scalasca Trace Tools and Extra-P yields hints to the human developer
on how to optimise the performance and the scalability of their applications, and to better
utilise the MSA awareness provided by ParaStation MPI.

The cycle is entered by taking the source code of an application, and using Score-P (cf. Sect. 3.1)
to insert the instrumentation and link its measurement libraries prior to the execution on an MSA
system. At runtime, the instrumented application will then collect generic as well as MSA-related
metrics. The latter is achieved by querying both the MSA-aware runtime environment ParaStation MPI
and the Slurm scheduler including the ParaStation resource manager. ParaStation MPI will provide
communication-related metrics. This can be, for example, the actual algorithm being used for
a collective communication pattern, the accurate number of bytes being sent by a process (i. e.,
taking communication patterns of collective algorithms into account), as well as the number of
messages and/or bytes that pass through a gateway as a potential bottleneck. The scheduler and
resource manager, in turn, provide system-related metrics such as the network topology defining the
types of connections within and between modules. This information will be routed to the Score-P
measurement system via well-defined interfaces such as PMIx, PMPI, and the MPI Tool Information

DEEP-SEA - 955606 50 30.11.2021

D3.1 Software Specification

Interface (MPI_T). It remains to be decided which interface will suit the demands of the optimisation
cycle best. Likewise, potential extensions and efforts for their standardisation are also part of the
work realising this optimisation cycle.

In the next step, the resulting call-path profiles and event traces are fed into Extra-P and the
Scalasca Trace Tools respectively. Extra-P processes a (small) series of profiles generated at
different configurations (e. g., scales) to create empirical performance models, which can be analysed
by the developer in a graphical viewer to pinpoint scalability bottlenecks in the application. These
performance models will also serve as input for the Application Mapping Toolchain (cf. Sect. 4.3). On
the other hand, the more detailed event traces are analysed by the Scalasca Trace Tools, producing
an extended call-path profile enriched with higher-level metrics extracted from the trace data. This
report can be explored by the application developer in an interactive report browser to locate wait
states and their root causes, and to examine the critical-path profile of the application.

Finally, by leveraging the performance models from Extra-P as well as the analysis reports from the
Scalasca Trace Tools, application developers are enabled to drill down and thoroughly understand the
MSA-related behaviour of their application codes (e. g., whether wait states occur in communication
operations within or across modules, or which code regions are more scalable than others and thus
might benefit from being executed on a booster module). This facilitates the identification of opportu-
nities for optimisation, e. g., by modifying the source code to improve algorithms and communication
patterns or improving the run-time execution configuration by adjusting the mapping of processes
onto the different modules of the MSA system. The latter is also supported by the Application Map-
ping Toolchain, which will also provide advanced mapping recommendations. Once corresponding
modifications have been applied to the application code and/or the execution configuration, the cycle
is reiterated to both verify that the changes led to the desired improvement and potentially focus on
the next bottleneck.

4.3 Application Mapping Toolchain

When adapting applications to MSA systems, developers face the challenge of mapping their applica-
tions onto the available modules. The Application Mapping Toolchain assists the developers in finding
a suitable mapping for the application and tries to automatise most of the work.

The presented cycle (cf. Fig. 15) is based on the MSA-related Optimisation Cycle and the Monitoring
Optimisation Cycle (cf. Sect. 4.1 and 4.2). Besides the application itself, it requires a description of
the system architecture as input. This description is created once for the specific system before the
cycle starts and can be reused for all other instances or iterations of this cycle on the corresponding
system. The system description entails at least information about the available modules and their
hardware configuration.

The first step in this cycle is to use the application and pass it on to the MSA-related Optimisation
Cycle, which will instrument and profile the application and use the gathered data to generate
performance models using Extra-P (cf. Sect. 3.1.1). These performance models will then be passed
back (using an internal Extra-P Format that is undefined until now) to this optimisation cycle, which
continues with the Extra-P Mapping Component. Additionally, performance data is continuously
captured by the Monitoring Optimisation Cycle. This data comprises the configuration options of the
job, an identifier for the program and its arguments, as well as performance measurements. Using the

DEEP-SEA - 955606 51 30.11.2021

D3.1 Software Specification

Optimisation

Human

DeveloperApplication configured according to mapping

(If necessary ported to another platform)
Suggestions for mapping

Performance Analysis

Extra-P
MappingApplication

System
Description

Optimised execution configuration

Historic performance data

Performance/scalability modelsMSA-related

Optimisation

Monitoring

Figure 15: The Application Mapping Toolchain built around Extra-P. It relies on the outcome of both
the monitoring optimisation cycle and the MSA-related optimisation cycle.

historic performance data gathered from the Monitoring Optimisation Cycle, the system description,
and the performance models, the Extra-P Mapping Component will suggest suitable mappings that
improve the fit between the application and the MSA system. The suggestions will be visible to
the user in the application user interface in the form of human-readable performance models and
matching annotations. The annotations will, for example, suggest on which type of MSA module the
respective application part should be executed and how many nodes should be used. Additional
recommendations may provide the number of processes that should be started on each node.

The developer can use these suggestions and apply an optimised execution configuration to the
runtime system. If necessary, the developer will need to adapt the application, so that its parts can
be distributed across the modules. This may even include the porting of application parts to other
hardware platforms or programming models (e. g., from CPU to GPU). The suggestion mechanism of
the Extra-P Mapping Component may continue to make suggestions for all non-optimal application
parts. These suggestions might contradict each other, so the developer is responsible to stop the
cycle once a suitable result is achieved.

4.4 Malleable Optimisation Cycles

A prototype malleable infrastructure based on Slurm will be produced by the DEEP-SEA project as an
output of Tk5.2. No application or tool can be developed concretely until this prototype is produced;
therefore, the optimisation cycles described in this section are early plans and are expected to change
significantly.

A malleable tool is one that can adapt to allocation changes. For example, a malleable distributed
memory debugger will adapt to increases and reductions of the number of processes that are part of
a malleable MPI application. At this stage of the DEEP-SEA project, we will define simple monitoring

DEEP-SEA - 955606 52 30.11.2021

D3.1 Software Specification

tools that will serve as proof of concept. This is a conservative but realistic goal that can later be
expanded upon.

Control

Runtime

Process Manager

(Slurm or ParaStation)

Process-local Data

Online Report or Summary Report

Scheduler
Node-local Data

Resource Allocation Update

Performance Analysis/Modeling

Parallel Efficiency
Model

 Application Data

Reporting Tool

Feedback

Runtime
System

Application

Resource Allocation Command

Metrics

Figure 16: The malleable online monitor acts as performance feedback, malleability control, and
reporting tool.

4.4.1 Malleable Online Monitor

A malleable online monitor that provides performance metrics of monitored applications will be
developed. The monitor will react to job-step allocation changes. A job may contain static and
malleable applications, represented in Slurm as job-steps, each with its own sub-allocation. A job
holds an allocation that is then split into sub-allocations for each job-step. The sub-allocations of
malleable job-steps will be updated with malleable operations, and the aggregated change will be
applied to the job allocation. This way, both static (where allocations never change) and malleable
workloads will be supported.

The relevant optimisation cycle is presented in Figure 16. Starting from the left, the job-step provides
process-local monitor data to the process manager daemon at each node. Application processes
include programming model specific runtime systems. Runtime systems extended in DEEP-SEA
include: OmpSs, GPI-2, GPI-Space, and MPI runtime libraries, such as ParaStation MPI and
Open MPI.

A reduction of the process-local data is performed to produce node-local data. The scheduler
produces a final reduction of the monitoring data of the relevant job-step, from the set of node-local
inputs. This is done at the Slurm controller daemon, where the scheduler plugin (cf. Sect. 3.4.2) is
loaded. These reductions are collected periodically at configurable time resolutions. The application
data is then fed to a parallel efficiency model.

The system will have scheduler-driven and application-driven malleability support (cf. ‘Management of
Malleable Jobs’ on page 36). The difference between these use cases is based on which component
initiates the negotiation. In the scheduler-driven use case, the scheduler provides malleability offers to
the application, while in the application-driven use case, the application makes allocation requests. In
both use cases, an agreement must be reached, and the application needs to initiate the malleability
operation. The allocation metadata at the network of process manager daemons is kept synchronised

DEEP-SEA - 955606 53 30.11.2021

D3.1 Software Specification

with the scheduler via resource allocation updates. The resource allocation command provides the
necessary allocation update metadata to the runtime system, based on the agreement.

The backfill scheduler will be extended with commands to configure the monitor as well as to request
data. The collected data can be used in different ways: to prepare a summary for users, or to assist
in malleable scheduling decisions. Scheduling decisions will take place in both scheduler-driven and
application-driven malleable use cases. The data will be provided at the Slurm job-step level. The
data of a job will be provided as the set of monitor data of the job steps where the monitor has been
enabled.

A command-line interface will be provided for the users to inspect monitor data and the parallel
efficiency metrics of their jobs. It is not yet defined whether this will be a new command-line interface,
or an extension to an existing Slurm command, such as sstat. The first implementation of this user
tool will provide online or summary reports of running or completed jobs and job-steps, where the
monitor was enabled.

4.4.2 Malleable OmpSs@Cluster runtime

OmpSs@Cluster supports offloading of tasks to other nodes, with the scheduling of tasks to nodes,
tracking of dependencies among tasks and lazy/eager data transfers controlled by the runtime system
(cf. Sect. 3.3.2). In an MPI+OmpSs@Cluster application, the application’s main functions run on a
subset of the MPI processes, using the communicator visible to the application, whereas the runtime
offloads tasks to also use the rest of the MPI processes.

The runtime system will be extended to take the role of the runtime system in Figure 16. It will make
use of MPI sessions to support malleability in an unmodified MPI+OmpSs tasks program, and it will
be extended to react to resource allocation commands from the job scheduler. Adding resources (i. e.,
nodes) can be done easily, with the data lazily migrated to the additional nodes. Removing resources
requires the data to be actively migrated from the nodes that are to be released. The runtime may be
able to decide which nodes can be released. It may also be extended to provide information to the
scheduler, such as scalability or parallel efficiency, that can be used for malleability decisions, or to
actively request additional resources. The precise nature of the interface between the job scheduler
and the application/runtime is currently under discussion.

4.5 Memory Management Optimisation Pipeline

The DEEP-SEA memory management optimisation pipeline is depicted in Figure 17. Applications
(e. g., TensorFlow) will be unmodified versions leveraging standard allocation calls such as malloc and
free. Users may opt to perform offline memory placement optimisation at allocation granularity. This
is performed via the Extrae profiler (cf. Sect. 3.2), which outputs a data-oriented profile analysis that
is fed to the hmem_advisor. The advisor provides an optimised placement of the memory allocations
and writes this to a file, which is parsed by FLEXMALLOC at runtime. This, in turn, decides on the
final destination of the allocation leveraging different allocation calls. These memory allocations can
be achieved through a high-level programming library such as the OpenMP Memory Management

DEEP-SEA - 955606 54 30.11.2021

D3.1 Software Specification

interface. Data is then allocated by the low-level, heterogeneous memory allocation libraries, e. g.,
the MPC Allocator (cf. Sect. 3.2).

During runtime, the operating system may monitor the accesses to different memory regions and
perform live migrations to further optimise data placement in NUMA systems (including those featuring
heterogeneous memories exposed as NUMA nodes). This procedure is complementary to the one
formerly described, and is especially relevant for applications with a strong variability of access
patterns and memory objects between phases, which cannot be addressed by a static approach.

A source-to-source compiler will be provided as an alternative to FLEXMALLOC, for those cases
featuring many allocation calls, in which runtime allocation interposition would pose an unbearable
overhead. This compiler will translate allocation calls at compile time rather than run time, which
removes the interposition overhead, but also introduces some usability issues. The source code
of the application and any relevant libraries have to be available, and they need to be recompiled
incorporating the extra source-to-source step in the usual build procedures. Due to these extra
requirements, the compile-time alternative is recommended to be used only where deemed necessary.
To assess this, FlexMalloc includes the possibility of showing the number of allocation calls in the
output console.

Applications leveraging the OmpSs-2 programming model will follow a specialised approach to
leverage the specific knowledge with respect to data usage that the dependencies system features, in
cooperation with Extrae data-oriented profiling. OmpSs-2 provides an API that allows developers to
distribute data structures across different NUMA nodes using different policies. This information is not
only used to allocate the data structures, but it is also leveraged by the runtime system to implement
a locality-aware scheduler. In this case, the Nanos6 runtime will leverage the required allocation calls
internally to optimise data placement which, coordinated with optimised task scheduling, will provide
the optimised execution.

OS

Initial
Data
Placement
Optimised

Data

Migration

Profiling

Extrae

Optimisation

HMem Advisor

Data-
Oriented
Profile

Runtime

FlexMalloc

Dynamically
Optimised
Data
Placement

Statically
Optimised
Data
Placement

Application

Profiling

Extrae

Optimisation

HMem Advisor

Data-
Oriented
Profile

Compile Time

HMem S2S

Memory
Allocation
Calls
Translated

Statically
Optimised
Data
Placement

Het. Memory
Allocation Libs.

(e.g., MPC OpenMP
MM and allocator)

Application

Profiling

Extrae

Optimisation

Nanos6 NUMA
Allocation API

Data-
Oriented
Profile

Runtime

LibNUMA &

Het. Memory

Allocation
Libraries

Nanos6 NUMA-
aware

Scheduler

Dynamically

Optimized

Task

Scheduling

Statically
Optimised
Data
Placement

OmpSs-2

Application

Optimised
Execution

Optimised
Execution

OS

Initial
Data
Placement
Optimised

Data

Migration

Het. Memory
Allocation Libs.

(e.g., MPC OpenMP
MM and allocator)

Optimised
Execution

Figure 17: The memory allocation pipeline provides means for an optimised data placement in
hierarchical memory systems. This can be performed both offline and online depending
on the tools being involved.

DEEP-SEA - 955606 55 30.11.2021

D3.1 Software Specification

4.6 High-level Programming Interfaces Cycle

The DEEP-SEA high-level programming interfaces cycle is depicted in Figure 18. Both DaCe and
NabLab (cf. Sect. 3.5.1) display the same usage pattern. First, they each offer their own syntax
to write the input programs. Then, these programs are compiled into an IRs facilitating specialised
transformations. As the IR, DaCe uses a SDFG model, while NabLab uses its own IR based on
Ecore metamodel (cf. Sect. 3.5.1). These intermediate representations simplify the design and the
application of optimisation passes. The IR is modified through the use of multiple optimisations and
transformations passes, before generating the optimised code in the target language. Once the final
code is generated, this will be compiled to a binary program and executed on the target hardware.

Though the transformations applied on the IR aim at improving the application performance, a
transformation efficient for a class of applications may not be useful for another class of applications.
Collecting runtime information while executing an application will yield useful information on the
efficiency of the transformations and the code generation, in general but also in the application specific
case. Through the collected metrics, it will then be possible to give feedback to the frameworks with
the purpose to adapt and to improve the applied transformations. With NabLab, this collection of
performance data and the analysis of efficiency of the output program (i. e., this corresponds to the
efficiency of the applied optimisations) is realised by the user. The user then has to give feedback to
the NabLab developers for them to enhance the optimising transformations, and the decision-making
to choose which transformation should be applied.

For DaCe, the user has two options how to perform optimisations: (1) using heuristics to apply
transformations that have been observed to improve performance by the DaCe developers; and
(2) applying according transformations manually. These options are not mutually exclusive, i. e., a
common technique is to apply aggressive optimisation heuristics, then profile an application run
manually (using the tools described in Section 3.5.1) and revert transformations that show no benefit
or are detrimental to performance. A common example is too fine-grained parallel regions: The DaCe
optimisation heuristics try to expose as much parallelism as possible, which often leads to atomics
inserted into the code in order to allow concurrent updates to variables. Through profiling, the user
can identify very small (in terms of runtime) parallel sections and turn them back into sequential code
with the click of a button. Automating this process further and enabling the optimisation heuristics to
take runtime profiling information into account is a topic we will explore in the future, however, we
note that the manual interventions by a performance engineer will always be a priority in the DaCe
optimisation cycle.

4.7 Energy Optimisation

The minimisation of the energy consumption is becoming a first order optimisation criteria in HPC. In
this context, application developers should be assisted with simple yet effective methods to control
the energy consumption of their HPC applications. The energy optimisation cycle (cf. Fig. 19) relies
on BDPO [33], a tool that transparently runs in the background of allocated compute node, and
automatically optimises the energy consumption by leveraging hardware-exposed power control
knobs to save energy.

DEEP-SEA - 955606 56 30.11.2021

D3.1 Software Specification

Code generation

Compile to C++

Instrument C++
program

(PAPI/NVprof/...)

Compile to C++
OpenMP

Compile to C++ Kokkos

Compile to C++

STL-Threads

annotate

IR + Optimisations

Compile to SDFG

Static Data-movement

analysis of SDFG

Apply transformations

Compile to Nablab

Intermediate

Representation

Apply transformations

planed in DEEP-SEA

User feedback to update transformations

Performance Analysis / Modeling

Run and collect
performance data

Performance goals

met ?

Store list of

applied

transformations

yes

no

Run and collect
performance data

DaCe Input Program

Nablab Input Program

Figure 18: The high-level programming interface cycle visualises the common workflow for application
developers using either the DaCe or the NabLab DSL.

Performance Analysis

Compare execution time and

energy consumption between

the reference and bdpo runs

Application Developer

Runtime Optimization

BDPO (optimise energy
consumption)

Run application
Measure new execution time

and energy consumption

Optimisation

Save BDPO's optimal optimisation

parameters for the target application

Tune BDPO's optimisation parameters

if energy savings are low and/or

performance degradation is high

Use BDPO's logging

and/or

profiling files

Application

Application Developer

Reference run

(execution time

+

energy consumption)

Figure 19: The energy optimisation cycle relying on BDPO for a dynamic adjustment of the power
and performance control knobs exposed by the hardware.

DEEP-SEA - 955606 57 30.11.2021

D3.1 Software Specification

The energy optimisation cycle requires a reference run of the target application for which the
execution time and energy consumption are recorded. The optimisation cycle is entered when the
target application is launched alongside BDPO to dynamically optimise its energy consumption while
measuring the new execution time and the consumed energy.

The effectiveness of BDPO is assessed by comparing the execution time and the energy consumption
between the reference and BDPO runs. If energy savings are low and/or performance degradation is
high, application developers have the option to fine tune BDPO’s optimisation parameters (may rely
on BDPO-produced logging and/or profiling files) and run the target application with a new BDPO
configuration again.

Finally, once the obtained energy savings are satisfactory, the application developers save the best
BDPO configuration (if changed from default) for future runs of the target application.

4.8 Memory System Performance Analysis

The DEEP-SEA software stack targets at highly Heterogeneous Memory Systems (HMSs) of current
and forthcoming HPC platforms. With this objective in mind, we will increase the memory-related
profiling, performance analysis, and prediction capabilities of state-of-the-art BSC HPC tools. Extrae
and Paraver will be integrated with PROFET [26], an analytical model that quantifies the impact of the
memory system on the application’s performance as well as the power and energy consumption (cf.
‘PROFET’ on page 19 in Sect. 3.1.1).

The overall optimisation cycle is illustrated in Figure 20. The process starts with the profiling of the
hardware platform and the application. The target hardware platform memory system is profiled
with PROFET. The Extrae tool is used to instrument the application’s execution (capturing hardware
counters and MPI events) on the target platform. Based on the application and platform profiling,
PROFET models the application memory behaviour (i. e., application stress/use of the memory
system) and can be used to estimate application performance on different memory systems (e. g.,
HBM, DDR4/5, and Optane). PROFET performs the application analysis at the level of the observation
interval. The observation interval is a trade-off between model precision (the smaller the intervals, the
higher precision) and the application profiling overheads (the smaller intervals, the higher overheads).
In the current implementation PROFET implementation, intervals of 0.1 s to 1 s are reasonable. The
analysis can be also performed at the level of the CPU burst1 comprising various observation intervals.
The information of the CPU bursts estimated by PROFET is fed back to the Paraver trace file. The
results are then analysed with the Paraver tool to evaluate different configurations and compare with
the instrumented execution. This way, optimisations on the current HPC platforms as well as the
exploration of future platforms are possible.

4.9 Multi-level Simulation Approach

Simulation is an essential step in guiding the development of complex computer hardware and
systems. It reduces both financial and time costs of exploring the optimal design decisions. However,

1CPU burst is a region of application thread or process execution between two consecutive communication events.

DEEP-SEA - 955606 58 30.11.2021

D3.1 Software Specification

Profiling

Extrae

Platform profiling

Modeling

Application profiling

(application traces)

Performance
modeling

HW counters

data

Target HW
platform(s)

Application

Optimisation

Application
execution

Platform optimisations

PROFET

Human
Developer

Performance
analysis

Application optimisations

Analysis and optimisation

Memory system

use/stress

Paraver

Figure 20: Performance analysis and optimisation of heterogeneous memory system using Extrae,
PROFET, and Paraver.

simulation adds a significant overhead when running benchmark applications, often rendering the
simulation of large computing systems impractical. MUSA is a simulation methodology developed by
BSC which combines multiple levels of abstractions in order to make simulating systems of thousands
of nodes and cores feasible (cf. Sect. 3.1.1).

Figure 21 shows the optimisation cycle of MUSA. The first step of the process is to trace the
application used for benchmarking or that the developer wants to optimise. Tracing requires two
iterations over the applications. First, using the Extrae instrumentation tool, we capture only the higher
level events, such as MPI and OpenMP/OmpSs calls. In the second iteration we use DynamoRIO [56]
runtime code manipulation tool to generate a detailed trace, at instruction level. Instrumenting every
instruction can add significant overhead when executing an application. Therefore, MUSA targets
at applications that demonstrate an iterative behaviour, a common paradigm for parallel workloads,
and only traces a number of iterations of a single MPI rank. It is important that the two tracing steps
are performed separately since the overhead introduced by the necessary instruction to produce the
detailed trace can alter the timing of MPI and OpenMP/OmpSs events. MPI and OpenMP/OmpSs
functions are not instrumented at the instruction level. Instead, they are marked with a special entry
in the trace enabling the matching of events between the two traces.

The combined trace can then be used as input to the simulation infrastructure, along with a configura-
tion file that defines the architecture details of the platform. Initially, the Dimemas MPI simulator is
used to drive the simulation by following the MPI events. When a computation stage is reached, the
TaskSim simulator is invoked. The computation stages can also execute in parallel before reaching
the corresponding invocation point. TaskSim can either run in burst mode simulating only higher
level OpenMP/OmpSs events, or it can run in detailed mode simulating each instruction (from the
trace). Detailed simulations can be very slow, but higher level simulations do not consider the memory
subsystem impairing the simulation precision. The MUSA methodology can either employ automatic
tools (such as TaskPoint[57]) or manual input from the developer to decide which computational
stages will be executed in detailed mode and use the results to fast-forward the rest. This way, the
combination of two different abstraction levels of abstraction enables the fast simulation of intra-node

DEEP-SEA - 955606 59 30.11.2021

D3.1 Software Specification

Application TracingApplication Tracing

PIN Instruction tracerMPI + OpenMP

event tracer

Merge Traces

Trace Application in 2 steps

Combined Trace

Analysis and Optimisation

Human Developer
(Analyse Results)

Performance Statistics

Simulated Execution Trace

View Trace

Hardware Optimizations

Paraver

Tune/Re-run Simulation

Architecture Simulation

Dimemas
TaskSim Simulator

- OpenMP events
- Detailed simulation

MUSA

Computation

Simulation

Define HW Configuration
(e.g. #cores/vector engine/memory system)

MPI simulation

Application

Application Optimizations

HW Platform

Figure 21: The MUSA optimisation cycle enables the simulation and application optimisation for
systems of thousands of nodes and cores.

computational stages at a high precision. The result of the simulation stage is a generated trace with
the simulated application behaviour and a file containing performance statistics.

The performance statistics can then be analysed by the human developer to drive the hardware and/or
application optimisations. The trace can also be viewed by the human developer using the Paraver
tool, for a more in-depth analysis of the application. Moreover, by viewing the trace, the developer
can identify and define the computational stages that should be simulated in detailed mode for a
more fine-grained control over the simulation process. The original trace generated by the tracing
process in the first stage can also be used for the same purpose of defining the detailed simulation
segments, before actually running any simulations. This way, developers can have a better control
over the samples used for detailed simulation, complementing or ignoring altogether any automatic
sampling techniques. The developer can also opt to tune and rerun the simulation using different
hardware/application configurations before the final optimisations are committed.

4.10 Analysis of Data Transfers and Memory Behaviour

Access to data is a crucial aspect that, regardless of the level of analysis, influences the overall
performance of an application. Modern systems feature great computing capabilities, which often
makes the access to data the bottleneck of a running application. This is even more so if the data
is located on distant unsuitable memory segments. The MemAxes tool aims at observing the data
transfers within a system and analysing the collected data.

DEEP-SEA - 955606 60 30.11.2021

D3.1 Software Specification

Application Sampling/Code instrumentation

Mitos
Memory sample data

Source code Source code mapping

Optimisation

Human
Developer Visualisation of memory

samples, where potential

bottlenecks can be

identified

Performance Analysis

MemAxes

Application

Applied optimisations

Developer refines

visualisation

parameters

Figure 22: The MemAxes optimisation cycle relies on Mitos for the collection of memory samples
containing detailed information of single memory operations. Based on the analysis of
these samples by using MemAxes, the developer may improve the application’s memory
access behaviour.

DEEP-SEA - 955606 61 30.11.2021

D3.1 Software Specification

Figure 22 presents the MemAxes optimisation cycle. In the centre of the optimisation, there is an
application that is to be analysed and potentially optimised if suboptimal behaviour is identified. The
Mitos wrapper triggers the application and collects memory samples containing detailed information
of single memory operations. If the developer wishes to include a mapping of the memory samples to
the source code, the measured application will need to be compiled with debug information switched
on. Apart from that, information regarding hardware topology is collected as well to enable mapping
of each sampled memory operation to the hardware. The results of the data collection are stored in a
series of output files in a predefined format.

The generated output can be opened in MemAxes (which can already run locally on the developer’s
computer). MemAxes analyses and visualises the collected data to present them to the developer
in an easy-to-understand manner. The developer analyses the data and can interactively refine the
visualisation parameters. One can, for instance, adjust the visualisation to only analysing samples
from one particular CPU core to see the characteristics of the memory accesses triggered by this
particular CPU core. Other example of adjusting the visualisation parameters may be restricting the
data to a certain line of code to see the effects of a particular code segment. All in all, the refinement
enables the developer to obtain an analysis of a fitting subset of data that magnifies the problematic
behaviour, which may otherwise be hard to identify among the aggregate of all measured data.

Based on observed behaviour, the developer can design and implement optimisations to mitigate
the encountered problems, if there are any. Most common use-cases include poor cache usage
(data locality), loading the data to incorrect NUMA regions (first-touch policy), or load imbalance
among different cores of a parallel code from the memory usage perspective. Finally, the updated
application can be measured again to ensure that the proposed optimisations indeed solve the
identified problematic sections, and do not cause any subsequent issues.

4.11 Analysis and Debugging of MPI-RMA Communications

When developing applications that use one-sided communications such as MPI-RMA or porting
existing ones with other communication models (e. g., two-sided communication), developers may
face difficulties dealing with the relaxed memory consistency nature of such communications and the
differences in synchronisation handling. The RMA-Analyzer aims at helping developers during the
development of such programs by giving them insights on possible memory consistency errors in
their program. In the context of the DEEP-SEA project, we focus on programs that use MPI-RMA
communications.

Figure 23 shows the optimisation cycle for MPI-RMA programs when using the RMA-Analyzer. Initially,
the developer builds its MPI-RMA application with the RMA-Analyzer using an LLVM compilation
toolchain. By doing so, the RMA-Analyzer instruments the load and store calls linked to MPI-RMA
communications and the MPI-RMA calls through an LLVM pass. When running the application, the
RMA-Analyzer will raise any memory consistency error it identifies during the execution, and stop the
program when the first error is detected. This way a stockpiling of silent errors without knowing the
root cause can be avoided. If an error is raised, the developer can identify where the error came from
with the error returned by the RMA-Analyzer. After fixing the error, the cycle is started again.

DEEP-SEA - 955606 62 30.11.2021

D3.1 Software Specification

Application Instrumentation

RMA-Analyzer

Instrumentation Load/store and MPI-RMA

instrumented memory accesses

Optimisation

Human Developer
Memory consistency fixes

in application code

Memory consistency errors

identified in the application,

and information of conflicting

memory accesses

MPI-RMA

Application

Instrumentation Analysis

RMA-Analyzer

Analysis

Figure 23: The RMA-Analyzer assists the application developer in detecting memory consistency
error in their MPI-RMA programs.

DEEP-SEA - 955606 63 30.11.2021

D3.1 Software Specification

5 Conclusions

This document presents the architecture of the DEEP-SEA software stack that will support application
developers to port, optimise, and run their applications for an MSA system. It is the result of an
intense co-design effort of all technical work-packages including WP 1.

Methodology In a first step, the partners identified all software-components that are relevant for
the description of the DEEP-SEA software architecture. For this, a series of online seminars was
organised in order to determine the requirements of the co-design applications organised in WP 1
on the one hand and the available tools, libraries, and runtime systems from the different partners
in WP 2, WP 3, WP 4, and WP 5 on the other hand. Based on the requirements and components,
the concept of so-called optimisation cycles was introduced. They represent the typical workflow of
a developer of scientific applications in HPC. Their main purpose is to identify the actual relevant
interactions between the components given the fact, that the large number of components results in a
plethora of possible combination and interactions—most of them irrelevant in practice.

By means of these optimisation cycles the information flow in between the components is identified,
and all relevant interfaces can be described.

Overview of Software Architecture In total, more than 40 components were identified and de-
scribed in Chapter 3. Their interplay in the context of the project is represented by 11 optimisation
cycles, each covering several components and the information flow in between them. They were
presented in Chapter 4.

The components and optimisation cycles are only covering those parts of the DEEP-SEA software
architecture, that will be tailored towards their use on heterogeneous (MSA-)systems in the course
of the project. At the same time, components that are just used as is and have no or only minor
interdependence with the described components are ignored throughout this document for the sake
of brevity. Those ignored components include important software systems such as the OS, language
interpreters and compilers, or unmodified runtime systems.

The relevance of the 11 optimisation cycles is metered in Table 2. After presenting them in a second
series of online seminars, the application developers of WP 1 provided feedback on which optimisation
cycles might be relevant for their work. The results are summarised in this table. Not too surprising
the coverage differs strongly across applications as well as optimisation cycles. While very basic
cycles (e. g., the Monitoring Optimisation Cycle) can be used by basically all applications, optimisation
cycles representing very innovative concepts (e. g., the Malleability Optimisation Cycles) show less
coverage. Nevertheless, it is worth to mention that all cycles triggered interest by at least one
application partner.

Outlook and Next Steps In a next step, the detailed planning of the required interfaces will be
done. This is accompanied by defining the actual features that will be implemented in the different
components in order to enable their use in the identified optimisation cycles. The corresponding

DEEP-SEA - 955606 64 30.11.2021

D3.1 Software Specification

results will be presented in the upcoming deliverables of WP 2, WP 4 and WP 5, i. e., D 2.1, D 4.1,
and D 5.1, respectively.

In parallel, a first round of deployment of all available software-components on the DEEP system
will be performed. The purpose of this exercise is two-fold: On the one hand, this enables the
application developers of WP 1 to become familiar with these tools and to identify current errors and
shortcomings. On the other hand, each component represents a counterpart to other components
in a given optimisation cycle. Thus, they are vehicles for the implementation and testing of these
other components. To enable the CI strategy of Tk 3.6, the project strives for an as much as possible
complete and automatised installation even at this early stage of the project.

DEEP-SEA - 955606 65 30.11.2021

D3.1 Software Specification

A
pp

lic
at

io
n

M
on

ito
ri

ng
M

S
A

M
ap

pi
ng

To
ol

ch
ai

n
M

al
le

ab
ili

ty
M

em
or

y
A

llo
ca

tio
n

D
aC

e/
N

ab
La

b
E

ne
rg

y
O

pt
im

is
at

io
n

H
M

S
M

U
S

A
M

em
A

xe
s

R
M

A
-A

na
ly

se
r

xP
ic

!
!

!
%

!
%

!
!

!
%

%

A
ID

A
py

!
!

%
%

!
%

%
%

%
%

%

IF
S

!
!

%
%

!
(!

)
%

!
!

!
%

FR
TM

!
%

%
%

%
%

%
%

%
(!

)
%

B
S

IT
%

%
%

%
%

%
%

!
%

%
%

G
ro

m
ac

s
!

%
%

%
!

!
%

!
%

%
!

N
E

K
50

00
!

%
%

%
%

!
%

%
%

%
!

PA
TM

O
S

(!
)

!
%

%
!

%
%

(!
)

%
%

%

TS
M

P
!

!
!

!
%

%
!

!
%

%
%

Ta
bl

e
2:

Fe
ed

ba
ck

fro
m

th
e

de
ve

lo
pe

rs
of

th
e

co
-d

es
ig

n
ap

pl
ic

at
io

ns
to

th
e

pr
op

os
ed

op
tim

is
at

io
n

cy
cl

es
.

A
ch

ec
k

m
ar

k
co

rr
es

po
nd

s
to

th
e

in
te

nt
io

n
of

th
e

ap
pl

ic
at

io
n

de
ve

lo
pe

rs
to

ha
ve

a
cl

os
er

lo
ok

at
th

e
re

sp
ec

tiv
e

op
tim

is
at

io
n

cy
cl

e
on

ce
th

is
is

av
ai

la
bl

e.

DEEP-SEA - 955606 66 30.11.2021

D3.1 Software Specification

List of Acronyms and Abbreviations

AI Artificial Intelligence

AN Data Analytics Node

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BDPO Bull Dynamic Performance Optimizer, Glossary: BDPO

BN Booster Node

BoP Board of Partners for the DEEP-SEA project

BXI BullSequana eXascale Interconnect

CA Consortium Agreement

CI Continuous Integration

CLI Command-Line Interface

CM Cluster Module, Glossary: CM

CN Cluster Node

CPU Central Processing Unit

CUDA Compute Unified Device Architecture, Glossary: CUDA

CUPTI CUDA Profiling Tools Interface

DaCe Data-Centric parallel programming, Glossary: DaCe

DAM Data Analytics Module first, Glossary: DAM

DCDB Data Center Data Base, Glossary: DCDB

DDG Design and Development Group, Glossary: DDG

DDR Double Data Rate

DEEP Dynamical Exascale Entry Platform (project FP7-ICT-287530)

DEEP-ER DEEP – Extended Reach (project FP7-ICT-610476)

DEEP-EST DEEP – Extreme Scale Technologies

DEEP-SEA DEEP – Software for Exascale Architectures

DEEP/-ER Term used to refer jointly to the DEEP and DEEP-ER projects

DL Deep Learning

DLB Dynamic Load Balancing, Glossary: DLB

DN DAM Node

DoW Description of Work

DRAM Dynamic Random Access Memory, Glossary: DRAM

DSL Domain-specific Language

DEEP-SEA - 955606 67 30.11.2021

D3.1 Software Specification

DVFS Dynamic Voltage and Frequency Scaling

EC European Commission

EEHPC Energy Efficient High Performance Computing

EEP European Exascale Projects

EMF Eclipse Modeling Framework

EPI European Processor Initiative

ESB Extreme Scale Booster, Glossary: ESB

ETP4HPC European Technology Platform for High Performance Computing

EU European Union

FFT Fast Fourier Transform

FIFO First-In-First-Out

FLEXMALLOC Flexible Memory Allocator, Glossary: FLEXMALLOC

Flop/s Floating point Operation per second

FPGA Field-Programmable Gate Array, Glossary: FPGA

FTI Fault Tolerant Interface

GASPI Global Address Space Programming Interface, Glossary: GASPI

GFLOPS Giga Floating Point Operations per Second, Glossary: GFlop/s

GPU Graphics Processing Unit

GROMACS Groningen Machine for Chemical Simulations description

GUID Globally Unique Identifier

H2020 Horizon 2020

HBM High Bandwidth Memory

hmem_advisor Heterogeneous Memory Advisor, Glossary: hmem_advisor

HMS Heterogeneous Memory System

HPC High Performance Computing

HPDA High Performance Data Analytics

HW Hardware

I/O Input / Output

I²C Inter-Integrated Circuit Computer Bus

IB InfiniBand, Glossary: InfiniBand

IC Innovation Council

IDE Integrated Development Environment

IP Intellectual Property

IPC Instructions Per Cycle

DEEP-SEA - 955606 68 30.11.2021

D3.1 Software Specification

IPMI Intelligent Platform Management Interface

IR Intermediate Representation

ISA Instruction Set Architecture

ISO International Organization for Standardization

JLESC Joint Laboratory for Extreme Scale Computing

JUBE Jülich Benchmarking Environment

JURECA Jülich Research on Exascale Cluster Architectures

JUWELS Jülich Wizard for European Leadership Science

KNL Knights Landing, Glossary: KNL

LLNL Lawrence Livermore National Laboratory

ML Machine Learning

MoU Memorandum of Understanding

MPC Multi-Processor Computing, Glossary: MPC

MPI Message-Passing Interface, Glossary: MPI

MPI-RMA Remote Memory Access interface of MPI

MPI_T MPI Tool Information Interface, Glossary: MPI_T

MPMD Multiple Program Multiple Data

MQTT Message Queuing Telemetry Transport, Glossary: MQTT

MSA Modular Supercomputer Architecture

MUSA MUlti-level Simulation Approach

MUSIC Multi-Simulation Coordinator

NAM Network Attached Memory

NF Network Federation

NN Neural Network

NUMA Non-Uniform Memory Access

NV-DIMM Non-Volatile Dual In-line Memory Module

NVM Non-Volatile Memory

NVRAM Non-Volatile Random-Access Memory

OA Open Access

ODC Other Direct Costs

OPA Omni-Path Architecture, Glossary: Omni-Path

OpenCL Open Computing Language, Glossary: OpenCL

OpenMP Open Multi-Processing, Glossary: OpenMP

DEEP-SEA - 955606 69 30.11.2021

D3.1 Software Specification

ORTE Open MPI Runtime Environment

OS Operating System

OTF2 Open Trace Format 2, Glossary: OTF2

PAPI Performance Application Programming Interface

PARCOACH PARallel COntrol flow Anomaly CHecker first, Glossary: PARCOACH

PCIe Peripheral Component Interconnect Express

PFLOPS Peta Floating Point Operations per Second, Glossary: PFlop/s

PGAS Partitioned Global Address Space

PI Principal Investigator

PIM Processing In Memory

PMEM Persistent Memory

PMI Process Management Interface

PMIx Process Management Interface for Exascale

PML Point-to-point Management Layer

PMPI MPI Profiling Interface

PRACE Partnership for Advanced Computing in Europe

PROFET PROFiling-based EsTimation of performance and energy, Glossary: PROFET

R&D Research and Development

RAM Random-Access Memory

RAS Reliability, Availability, Serviceability

RDA Research Data Alliance

RDMA Remote Direct Memory Access

RDP Reliable Datagram Protocol

REST Representational State Transfer, Glossary: REST

RISC Reduced Instruction Set Computing

RM Resource Manager

RMA Remote Memory Access

RMI Remote Method Invocation

RML Risk Management List

SCR Scalable Checkpoint/Restart

SDF3 Synchronous Dataflow, Glossary: SDF3

SDFG Stateful Dataflow multiGraph

SDFV SDFG Viewer

SDV Software Development Vehicle, Glossary: SDV

SICM Simplified Interface to Complex Memory, Glossary: SICM

SIMD Single Instruction Multiple Data

DEEP-SEA - 955606 70 30.11.2021

D3.1 Software Specification

SME Small and Medium Enterprises

SMP Symmetric Multiprocessing

SN Storage Node

SNMP Simple Network Management Protocol

SPANK Slurm Plug-in Architecture for Node and job (K)control

SRA Strategic Research Agenda prepared by ETP4HPC

SSSM Scalable Storage Service Module

STEM Science, Technology, Engineering, and Mathematics

STS Satellite Time Series

SW Software

TCP/IP Transmission Control Protocol and the Internet Protocol

TFLOPS Tera Floating Point Operations per Second, Glossary: TFlop/s

Tk Task, Glossary: Tk

ToW Team of WP Leaders

TRL Technology Readiness Level

UCX Unified Communication X, Glossary: UCX

UI User Interface

WG Working Group

WP Work Package

DEEP-SEA - 955606 71 30.11.2021

D3.1 Software Specification

Glossary

ARM Family of RISC architectures for computer processors, configured for various
environments. Formerly standing for Advanced RISC Machine, or Acorn RISC
Machine.

ASTRON Netherlands Institute for Radio Astronomy, Netherlands.

Aurora Name of the subsidiary of the Eurotech Group dedicated to the HPC business.
Aurora also refers to Eurotech’s line of cluster systems.

BADW-LRZ Formal, administrative acronym of the Leibniz-Rechenzentrum der Bayerischen
Akademie der Wissenschaften. Computing Centre, Garching, Germany. Across
the proposal “LRZ” is used as short version of this acronym, as it fits better in
tables and headers.

BDPO The Bull Dynamic Performance Optimizer is a job-oriented energy optimisation
tool developed by Atos.

BSC Barcelona Supercomputing Centre, Spain

BSCW Repository used in the DEEP-SEA project to share all project documentation.

Cassandra The Apache Cassandra key-value store.

CEA Commissariat à l’énergie atomique et aux énergies alternatives, France

CERN European Organisation for Nuclear Research / Organisation Européenne pour la
Recherche Nucléaire, International organisation.

CM A module of an MSA system having CN containing high-end general-purpose
processors and a relatively large amount of memory per core.

CUBE4 Open call-path profile format used by Score-P, the Scalasca Trace Tools, and
Extra-P.

CUDA A parallel computing platform and programming model developed by NVIDIA for
general computing on GPUs.

DaCe A development workflow where the algorithm is independently specified from its
optimisation by separating the computation from data movement.

DAM A module of an MSA system with DNs based on general-purpose processors,
a huge amount of (non-volatile) memory per core, and support for the specific
requirements of data-intensive applications.

DCDB Monitoring framework for the acquisition of telemetry data developed by LRZ.

DDG A committee of technical experts from the system SW, programming models,
tools, and application domains that drives the co-design discussions and make
the most important design decisions in DEEP-SEA.

Dimemas Performance analysis tool developed by BSC.

DEEP-SEA - 955606 72 30.11.2021

D3.1 Software Specification

DIMM Dual In-line Memory Module, a series of dynamic random-access memory inte-
grated circuits.

DLB A library for dynamic load balancing developed by BSC.

DRAM Typically, describes any form of high capacity volatile memory attached to a CPU.

ESB A module with highly energy-efficient many-core processors as BNs, but a re-
duced amount of memory per core at high bandwidth.

ETHZ Eidgenössische Technische Hochschule Zürich, Switzerland.

EVOLVE EU project addressing HPC-enabled capabilities in data analytics for processing
massive and demanding datasets without requiring extensive IT expertise.

Exascale Computer systems or applications, which are able to run with a performance
above 1018 Floating point operations per second.

Extra-P Tool for automated performance modeling of HPC applications developed by
TUDA.

Extrae Performance analysis tool developed by BSC.

Fabri³ Interconnect technology based on EXTOLL (pron. “Fabri-Cube”).

FHG Fraunhofer Gesellschaft zur Foerderung der Angewandten Forschungs e. V.,
Germany.

FLEXMALLOC An interceptor for regular allocation calls during runtime. It performs allocations
into specific memory subsystems according to the output of hmem_advisor.

FORTH Foundation for Research and Technology – Hellas, Greece.

FP7 European Commission 7th Framework Programme.

FPGA An integrated circuit to be configured by the customer or designer after manufac-
turing.

FZJ Forschungszentrum Jülich GmbH, Jülich, Germany.

GASPI A programming model for one-sided and asynchronous communication between
computing nodes.

GFlop/s 109 Floating point operations per second.

GPI-2 The implementation of the GASPI specification.

GPI-Space A task-based workflow management system for parallel applications.

GROMACS A toolbox for molecular dynamics calculations providing a rich set of calculation
types, preparation and analysis tools.

hmem_advisor A tool developed at BSC providing an optimised distribution of memory objects
to the different memory subsystems.

Hydra The MPICH-native Process Manager.

InfiniBand A networking communication standard for HPC clusters.

DEEP-SEA - 955606 73 30.11.2021

D3.1 Software Specification

iPic3D Programming code developed by the KULeuven to simulate space weather

JSC Jülich Supercomputing Centre GmbH, Jülich, Germany

KNL The second generation of Intel® Xeon Phi (TM).

Kokkos A programming model in C++ for writing performance-portable applications tar-
geting all major HPC platforms.

Kubernetes A scheduler for an automated management of resources for AI workloads.

KULeuven Katholieke Universiteit Leuven, Belgium

LIKWID A data source for node-level performance counters.

LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften. Com-
puting Centre, Garching, Germany. Short name of long partner acronym “BADW-
LRZ”.

MemAxes A node-level and system-wide memory/data-traffic visualisation tool developed
by TUM.

Mercurium BSC’s source-to-source compilation infrastructure, mainly used with Nanos6 or
Nanos++ to implement OpenMP and OmpSs/OmpSs-2.

Mont-Blanc European scalable and power efficient HPC platform based on low-power em-
bedded technology.

MPC The MPC framework regroups an MPI, an OpenMP, and a pthread implementa-
tion in the same software, for better interoperability.

MPI An API specification typically used in parallel programs that allows processes to
communicate with one another by sending and receiving messages.

MPI_T An interface which provides a mechanism for MPI implementers to expose vari-
ables, each of which represents a particular property, setting, or performance
measurement from within the MPI implementation.

MPICH An MPI implementation maintained by Argonne National Laboratory.

MQTT A publisher/subscriber-based messaging protocol.

NabLab EMF-Based language and development environment inspired from Nabla. It
provides a user-friendly environment for mathematicians.

Nanos++ BSC’s runtime system used to support OmpSs-1.

Nanos6 BSC’s runtime system used to support OmpSs-2.

NVM Used to describe a physical technology or the use of such technology in a
non-block-oriented way in a computer system.

Omni-Path Short for Omni-Path Architecture (OPA), a communication architecture owned by
Intel.

OmpSs BSC’s Superscalar (Ss) for OpenMP.

DEEP-SEA - 955606 74 30.11.2021

D3.1 Software Specification

OmpSs-2 BSC’s extension of OmpSs to support task nesting and fine-grained dependen-
cies across nesting levels.

OMPT The OpenMP tools interface.

OpenACC OpenACC Application Programming Interface, a directive-based API for writing
parallel programs that run code regions on multicore CPUs or attached accelera-
tors.

OpenCL A framework for writing programs that execute across heterogeneous platforms.

OpenHPC A community effort that is initiated from a desire to aggregate a number of
common ingredients required to deploy and manage HPC Linux clusters.

OpenMP Application programming interface that support multi-platform shared memory
multiprocessing.

Open MPI An MPI implementation maintained by the Open MPI Project.

OTF2 Open event trace format and reader/writer libraries.

ParaStation Software for cluster management and control developed by ParTec.

Paraver A Performance analysis tool developed by BSC.

PARCOACH A debugging tool for collective operation usage in MPI and OpenMP developed
by Atos.

ParTec ParTec AG, Munich, Germany. Linked third Party of FZJ in DEEP-SEA.

perf A data source for node-level performance counters.

PFlop/s 1015 Floating point operations per second.

PIC Family of microcontrollers made by Microchip Technology Inc.

piSVM A parallel classification algorithm.

PMT Project Management Team of the DEEP-SEA project.

PObj Project Objective of the DEEP-SEA project.

PROFET Model to predict performance on given memory system developed by BSC.

pscom The low-level communication layer of ParaStation MPI.

REST An interface for web services.

Scalasca Trace Tools Trace-based performance analysis toolset on top of Score-P developed by JSC.

Score-P Community-maintained instrumentation and measurement infrastructure for par-
allel application performance analysis, developed by a consortium of partners
including JSC.

SDF3 An open dataflow graph interchange format.

SDV HW systems to develop software in the time frame where the DEEP-EST proto-
type was not available yet.

SICM Simplified Interface to Complex Memory: APIs for managing memory alloca-
tions across heterogeneous memory tiers (originally from Los Alamos National
Laboratories).

DEEP-SEA - 955606 75 30.11.2021

D3.1 Software Specification

SIONlib Parallel I/O library developed by JSC.

Slurm Job scheduler that will be used and extended in the DEEP-SEA project.

SYCL C++ single-source heterogeneous programming for OpenCL.

TensorFlow An open-source software library for dataflow programming.

TFlop/s 1012 Floating point operations per second.

ThinkParQ Spin-off company of FHG ITWM.

Tk Task – Followed by a number, term to designate a Task inside a Work Package
of the DEEP-SEA project.

TUDA Technical University of Darmstadt, Germany.

TUM Technical University of Munich, Germany.

UCX A communication framework for modern, high-bandwidth, and low-latency net-
works.

x86 Family of instruction set architectures based on the Intel 8086 CPU.

XPMEM Cross-Process Memory Mapping: mechanism for a process to access one
memory owned by another.

DEEP-SEA - 955606 76 30.11.2021

D3.1 Software Specification

Bibliography

[1] E. Suarez, N. Eicker, and T. Lippert. “Modular Supercomputing Architecture: from Idea to
Production; 3rd”. In: Contemporary High Performance Computing: From Petascale toward
Exascale, Volume 3. Vol. 3. 2019, pp. 223–251.

[2] A. Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time Infrastructure for
Periscope,Scalasca, TAU, and Vampir”. In: Tools for High Performance Computing 2011. Ed.
by H. Brunst et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 79–91. DOI:
10.1007/978-3-642-31476-6_7.

[3] Score-P website. URL: https://www.score-p.org (visited on 09/23/2021).

[4] M. Geimer et al. “Further Improving the Scalability of the Scalasca Toolset”. In: Applied Parallel
and Scientific Computing. Ed. by K. Jónasson. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 463–473. DOI: 10.1007/978-3-642-28145-7_45.

[5] D. Eschweiler et al. “Open Trace Format 2 – The Next Generation of Scalable Trace Formats
and Support Libraries”. In: Advances in Parallel Computing (Proc. of the Intl. Conference on
Parallel Computing, ParCo) 22 (2012), pp. 481–490. DOI: 10.3233/978-1-61499-041-3-481.

[6] A. Knüpfer et al. “The Vampir Performance Analysis Tool-Set”. In: Tools for High Performance
Computing. Ed. by M. Resch et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp. 139–155. DOI: 10.1007/978-3-540-68564-7_9.

[7] K. E. Isaacs et al. “Combing the Communication Hairball: Visualizing Parallel Execution Traces
using Logical Time”. In: IEEE Transactions on Visualization and Computer Graphics 20.12
(Dec. 2014), pp. 2349–2358. DOI: 10.1109/TVCG.2014.2346456.

[8] P. Saviankou et al. “Cube v4: From Performance Report Explorer to Performance Analysis
Tool”. In: Procedia Computer Science 51 (June 2015), pp. 1343–1352. DOI: 10.1016/j.procs.
2015.05.320.

[9] S. S. Shende and A. D. Malony. “The Tau Parallel Performance System”. In: The International
Journal of High Performance Computing Applications 20.2 (2006), pp. 287–311. DOI: 10.1177/
1094342006064482.

[10] D. Terpstra et al. “Collecting Performance Data with PAPI-C”. In: Tools for High Performance
Computing 2009. Ed. by M. S. Müller et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 157–173. DOI: doi.org/10.1007/978-3-642-11261-4_11.

[11] I. Zhukov et al. “Scalasca v2: Back to the Future”. In: Tools for High Performance Computing
2014. Ed. by C. Niethammer et al. Springer International Publishing, 2015, pp. 1–24. DOI:
10.1007/978-3-319-16012-2_1.

[12] Scalasca website. URL: https://www.scalasca.org (visited on 09/23/2021).

[13] M. Geimer et al. “A scalable tool architecture for diagnosing wait states in massively parallel
applications”. In: Parallel Computing 35.7 (July 2009), pp. 375–388. ISSN: 0167-8191. DOI:
https://doi.org/10.1016/j.parco.2009.02.003.

[14] D. Böhme et al. “Identifying the Root Causes of Wait States in Large-Scale Parallel Applications”.
In: ACM Trans. Parallel Comput. 3.2 (July 2016). ISSN: 2329-4949. DOI: 10.1145/2934661.

DEEP-SEA - 955606 77 30.11.2021

https://doi.org/10.1007/978-3-642-31476-6_7
https://www.score-p.org
https://doi.org/10.1007/978-3-642-28145-7_45
https://doi.org/10.3233/978-1-61499-041-3-481
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1109/TVCG.2014.2346456
https://doi.org/10.1016/j.procs.2015.05.320
https://doi.org/10.1016/j.procs.2015.05.320
https://doi.org/10.1177/1094342006064482
https://doi.org/10.1177/1094342006064482
https://doi.org/doi.org/10.1007/978-3-642-11261-4_11
https://doi.org/10.1007/978-3-319-16012-2_1
https://www.scalasca.org
https://doi.org/https://doi.org/10.1016/j.parco.2009.02.003
https://doi.org/10.1145/2934661

D3.1 Software Specification

[15] D. Böhme et al. “Scalable Critical-Path Based Performance Analysis”. In: 2012 IEEE 26th
International Parallel and Distributed Processing Symposium. May 2012, pp. 1330–1340. DOI:
10.1109/IPDPS.2012.120.

[16] A. Calotoiu et al. “Using Automated Performance Modeling to Find Scalability Bugs in Complex
Codes”. In: Proc. of the ACM/IEEE Conference on Supercomputing (SC13), Denver, CO, USA.
ACM, Nov. 2013, pp. 1–12. ISBN: 978-1-4503-2378-9. DOI: 10.1145/2503210.2503277.

[17] Extra-P repository. URL: https://github.com/extra-p/extrap (visited on 11/08/2021).

[18] E. Saillard, P. Carribault, and D. Barthou. “PARCOACH: Combining static and dynamic vali-
dation of MPI collective communications”. In: The International Journal of High Performance
Computing Applications 28.4 (2014), pp. 425–434. DOI: https : / / doi . org / 10 . 1177 /
1094342014552204.

[19] C. T. Aitkaci et al. “Dynamic Data Race Detection for MPI-RMA Programs”. In: Proceedings of
the 28th European MPI Users’ Group Meeting, EuroMPI 2021, Germany, September 7th-8th,
2021. ACM, 2021.

[20] Paraver: A Flexible Performance Analysis Tool. URL: https://tools.bsc.es/paraver (visited
on 10/04/2021).

[21] V. Pillet et al. PARAVER: A Tool to Visualize and Analyze Parallel Code. Tech. rep. CEPBA-UPC.
Departament d’Arquitectura de Computadors. Universitat Politècnica de Catalunya, 1995.

[22] BSC-Tools: Performance Analysis Tools. URL: https://tools.bsc.es (visited on 10/04/2021).

[23] Paraver Trace Generation Manual. URL: https://tools.bsc.es/doc/1370.pdf (visited on
10/04/2021).

[24] Dimemas MPI Simulator. URL: https://tools.bsc.es/dimemas (visited on 10/04/2021).

[25] Extrae User Guide. URL: https://tools.bsc.es/doc/html/extrae (visited on 10/04/2021).

[26] M. Radulovic et al. “PROFET: Modeling System Performance and Energy Without Simulating
the CPU”. In: Proc. ACM Meas. Anal. Comput. Syst. 3.2 (2019). DOI: 10.1145/3341617.
3326149.

[27] T. Grass et al. “MUSA: A Multi-Level Simulation Approach for next-Generation HPC Machines”.
In: Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’16. Salt Lake City, Utah: IEEE Press, 2016. ISBN: 9781467388153.

[28] A. Rico et al. “On the Simulation of Large-Scale Architectures Using Multiple Application
Abstraction Levels”. In: ACM Trans. Archit. Code Optim. 8.4 (Jan. 2012). ISSN: 1544-3566. DOI:
10.1145/2086696.2086715. URL: https://doi.org/10.1145/2086696.2086715.

[29] D. Sanchez and C. Kozyrakis. “ZSim: fast and accurate microarchitectural simulation of
thousand-core systems”. In: ISCA’ 13 Proceedings of the 40th Annual International Sym-
posium on Computer Architecture. 2013, pp. 475–486.

[30] S. Li et al. “DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM Simulator”. In: IEEE
Computer Architecture Letters 19.2 (2020), pp. 106–109. DOI: 10.1109/LCA.2020.2973991.

[31] Mitos repository. URL: https://github.com/LLNL/Mitos (visited on 11/09/2021).

[32] LLView website. URL: http://www.fz-juelich.de/jsc/llview (visited on 09/23/2021).

DEEP-SEA - 955606 78 30.11.2021

https://doi.org/10.1109/IPDPS.2012.120
https://doi.org/10.1145/2503210.2503277
https://github.com/extra-p/extrap
https://doi.org/https://doi.org/10.1177/1094342014552204
https://doi.org/https://doi.org/10.1177/1094342014552204
https://tools.bsc.es/paraver
https://tools.bsc.es
https://tools.bsc.es/doc/1370.pdf
https://tools.bsc.es/dimemas
https://tools.bsc.es/doc/html/extrae
https://doi.org/10.1145/3341617.3326149
https://doi.org/10.1145/3341617.3326149
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1145/2086696.2086715
https://doi.org/10.1109/LCA.2020.2973991
https://github.com/LLNL/Mitos
http://www.fz-juelich.de/jsc/llview

D3.1 Software Specification

[33] M. Stoffel and A. Mazouz. “Improving Power Efficiency Through Fine-Grain Performance Moni-
toring in HPC Clusters”. In: IEEE International Conference on Cluster Computing, CLUSTER
2018, Belfast, UK, September 10-13, 2018. IEEE Computer Society, 2018, pp. 552–561. DOI:
10.1109/CLUSTER.2018.00071.

[34] A. Netti et al. “From Facility to Application Sensor Data: Modular, Continuous and Holistic
Monitoring with DCDB”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. SC ’19. Denver, Colorado: Association for
Computing Machinery, 2019. ISBN: 9781450362290. DOI: 10.1145/3295500.3356191. URL:
https://doi.org/10.1145/3295500.3356191.

[35] SICM: Simplified Interface to Complex Memory. URL: https://www.exascaleproject.org/
research-project/sicm/ (visited on 11/30/2021).

[36] M. B. Olson et al. “Portable Application Guidance for Complex Memory Systems”. In: Proceed-
ings of the International Symposium on Memory Systems. MEMSYS ’19. 2019, pp. 156–166.
ISBN: 9781450372060. DOI: 10.1145/3357526.3357575. URL: https://doi.org/10.1145/
3357526.3357575.

[37] J. Ren et al. “Sentinel: Efficient tensor migration and allocation on heterogeneous memory
systems for deep learning”. In: International Symposium on High-Performance Computer
Architecture (HPCA). 2021.

[38] Infiniband Architecture Specification. Tech. rep. InfiniBand Trade Association, Nov. 2016.

[39] M. Nüssle et al. “An FPGA-based custom high performance interconnection network”. In: 2009
International Conference on Reconfigurable Computing and FPGAs. Dec. 2009, pp. 113–118.
DOI: 10.1109/ReConFig.2009.23.

[40] M. S. Birrittella et al. “Intel Omni-path architecture: Enabling scalable, high performance fabrics”.
In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. Aug. 2015, pp. 1–9.
DOI: 10.1109/HOTI.2015.22.

[41] J. M. Perez et al. “Improving the integration of task nesting and dependencies in OpenMP”. In:
2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2017,
pp. 809–818.

[42] M. Garcia, J. Corbalan, and J. Labarta. “LeWI: A Runtime Balancing Algorithm for Nested
Parallelism”. In: Parallel Processing, 2009. ICPP ’09. International Conference on. Sept. 2009,
pp. 526–533. DOI: 10.1109/ICPP.2009.56.

[43] DLB: Dynamic Load Balance library. URL: https://pm.bsc.es/dlb (visited on 10/28/2021).

[44] K. Feind and K. Mcmahoc. “An Ultrahigh Performance MPI implementation on SGI ccNUMA
Altix systems”. In: Computational Methods in Science and Technology (Special Issue) (2006),
pp. 67–70. DOI: 10.12921/cmst.2006.SI.01.67-70.

[45] Cross-Process Memory Mapping (XPMEM). URL: https://code.google.com/archive/p/
xpmem (visited on 11/30/2021).

[46] M. Sergent et al. “Efficient notifications for MPI one-sided applications”. In: Proceedings of the
26th European MPI Users’ Group Meeting, EuroMPI 2019, Zürich, Switzerland, September
11-13, 2019. Ed. by T. Hoefler and J. L. Träff. ACM, 2019, 5:1–5:10. DOI: 10.1145/3343211.
3343216. URL: https://doi.org/10.1145/3343211.3343216.

DEEP-SEA - 955606 79 30.11.2021

https://doi.org/10.1109/CLUSTER.2018.00071
https://doi.org/10.1145/3295500.3356191
https://doi.org/10.1145/3295500.3356191
https://www.exascaleproject.org/research-project/sicm/
https://www.exascaleproject.org/research-project/sicm/
https://doi.org/10.1145/3357526.3357575
https://doi.org/10.1145/3357526.3357575
https://doi.org/10.1145/3357526.3357575
https://doi.org/10.1109/ReConFig.2009.23
https://doi.org/10.1109/HOTI.2015.22
https://doi.org/10.1109/ICPP.2009.56
https://pm.bsc.es/dlb
https://doi.org/10.12921/cmst.2006.SI.01.67-70
https://code.google.com/archive/p/xpmem
https://code.google.com/archive/p/xpmem
https://doi.org/10.1145/3343211.3343216
https://doi.org/10.1145/3343211.3343216
https://doi.org/10.1145/3343211.3343216

D3.1 Software Specification

[47] P. Shamis et al. “UCX: An Open Source Framework for HPC Network APIs and Beyond”. In:
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. 2015, pp. 40–43. DOI:
10.1109/HOTI.2015.13.

[48] NVIDIA DGX Systems whitepaper. URL: https://images.nvidia.com/aem-dam/Solutions/
Data-Center/dgx-systems/dgx-systems-solution-brief.pdf (visited on 11/30/2021).

[49] A. Alexander V. Boukhanovsky, V. Krzhizhanovskaya, and M. Bubak. “Urgent computing for
decision support in critical situations”. In: Future Generation Computer Systems 79 (2018),
pp. 111–113. ISSN: 0167-739X. DOI: 10.1016/j.future.2017.11.003.

[50] E. Brun, S. Chauveau, and F. Malvagi. “PATMOS: A prototype Monte Carlo transport code to
test high performance architectures”. In: M&C 2017 - International Conference on Mathematics
& Computational Methods Applied to Nuclear Science & Engineering, Jeju, Korea, April 16-20,
2017. 2017.

[51] L. Hochstein et al. “Parallel programmer productivity: A case study of novice parallel program-
mers”. In: SC’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing. IEEE.
2005, pp. 35–35.

[52] T. Ben-Nun et al. “Stateful Dataflow Multigraphs: A data-centric model for performance portabil-
ity on heterogeneous architectures”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’19). 2019.

[53] A. Ivanov et al. Data Movement Is All You Need: A Case Study on Optimizing Transformers.
2020. arXiv: 2007.00072 [cs.LG].

[54] A. N. Ziogas et al. “A Data-Centric Approach to Extreme-Scale Ab Initio Dissipative Quantum
Transport Simulations”. In: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’19). 2019.

[55] Trace Event Format. URL: https : / / docs . google . com / document / d / 1CvAClvFfyA5R -
PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview (visited on 11/30/2021).

[56] DynamoRIO. URL: https://dynamorio.org/ (visited on 11/05/2021).

[57] T. Grass et al. “TaskPoint: Sampled simulation of task-based programs”. In: 2016 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software (ISPASS). 2016,
pp. 296–306. DOI: 10.1109/ISPASS.2016.7482104.

DEEP-SEA - 955606 80 30.11.2021

https://doi.org/10.1109/HOTI.2015.13
https://images.nvidia.com/aem-dam/Solutions/Data-Center/dgx-systems/dgx-systems-solution-brief.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/dgx-systems/dgx-systems-solution-brief.pdf
https://doi.org/10.1016/j.future.2017.11.003
https://arxiv.org/abs/2007.00072
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview
https://dynamorio.org/
https://doi.org/10.1109/ISPASS.2016.7482104

	Project and Deliverable Information Sheet
	Document Control Sheet
	Document Status Sheet
	List of Figures
	List of Tables
	Executive Summary
	Introduction
	Purpose and Scope

	Software Architecture
	The Modular Supercomputing Architecture
	Optimisation Cycles

	Components
	Performance Analysis
	Memory Management
	Communication and Programming Models
	Resource Management, Scheduling, and Orchestration
	Programmer Productivity

	DEEP-SEA Optimisation Cycles
	Monitoring Optimisation Cycle
	MSA-related Optimisation
	Application Mapping Toolchain
	Malleable Optimisation Cycles
	Memory Management Optimisation Pipeline
	High-level Programming Interfaces Cycle
	Energy Optimisation
	Memory System Performance Analysis
	Multi-level Simulation Approach
	Analysis of Data Transfers and Memory Behaviour
	Analysis and Debugging of MPI-RMA Communications

	Conclusions
	List of Acronyms and Abbreviations
	Glossary
	Bibliography

