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MACHINE LEARNING & HIGH PERFORMANCE COMPUTING 
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@ Juelich Supercomputing Centre (JSC) & University of Iceland & Modular Supercomputing
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JUELICH SUPERCOMPUTING CENTRE (JSC)
Institute of Multi-Disciplinary Research Centre Juelich of the Helmholtz Association in Germany

[1] Holmholtz Association Web Page

 Selected Facts
 One of EU largest 

inter-disciplinary
research centres
(~5000 employees)

 Special expertise in physics, materials science, nanotechnology,
neuroscience and medicine & information technology  (HPC & Data)  
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UNIVERSITY OF ICELAND
School of Engineering & Natural Sciences (SENS)

[2] University of Iceland Web page

 Selected Facts
 Ranked among the top 300 

universities in the world 
(by Times Higher Education)

 ~2900 students at the 
SENS school

 Long collaboration with 
Forschungszentrum Juelich

 ~350 MS students & ~150 PhD students

 Many foreign & Erasmus students; english courses
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UNDERSTANDING HIGH PERFORMANCE COMPUTING
In Comparison with High Throughput Computing

 High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques 
through specific support with dedicated hardware such as high performance cpu/core interconnections.

 High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that 
enable the execution of ‘farming jobs’ without providing a high performance interconnection between the cpu/cores.

HPC

network
interconnection
important

HTC
network
interconnection
less important!
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HPC & DATA SCIENCE: A FIELD OF CONSTANT EVOLUTION
Perspective: Floating Point Operations
per one second (FLOPS or FLOP/s)

© Photograph by Rama, 
Wikimedia Commons

1.000.000 FLOP/s

1.000.000.000.000.000 FLOP/s

~1984

~295.000 cores~2009 (JUGENE)

>5.900.000.000.000.000
FLOP/s
~ 500.000 cores
~2013  end of service in 2018

 1 GigaFlop/s = 109 FLOPS
 1 TeraFlop/s = 1012 FLOPS
 1 PetaFlop/s = 1015 FLOPS
 1 ExaFlop/s = 1018 FLOPS
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GERMAN GAUSS CENTRE FOR SUPERCOMPUTING
Alliance of the three national supercomputing centres HLRS (Stuttgart), JSC (Juelich) & LRZ (Munich)

Page 8

 Supercomputer JUWELS @ JSC
 Juelich Wizard for European Leadership Science (JUWELS)
 Cluster architecture based on commodity multi-core CPUs
 2,550 compute nodes: two Intel Xeon 24-core Skylake CPUs & 48 

accelerated compute nodes (4 NVIDIA Volta GPUs)

 Supercomputer SuperMUC @ LRZ
 155,000 cores

 Supercomputer Hazel Hen @HLRS
 185,088 compute cores

 GCS represents Germany in PRACE
[3] GCS Web page
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JUELICH SUPERCOMPUTING CENTRE (JSC) OF FZJ
Simulation & Data Labs (SDL) using High Performance Computing (HPC)

Communities
(e.g. remote
sensing &

health)
Research 
Groups

Simulation Labs

Cross-Sectional Teams Data Life Cycle Labs Exascale co-Design

Facilities

PADC

DEEP-EST
EU 

PROJECT

Domain-specific 
SDLs

Cross-
Sectional 

Team Deep 
Learning

Modular
Supercomputer

JURECA

Modular 
Supercomputer 

JUWELS

Research 
Group High 
Productivity 

Data 
Processing

Industry
Relations

Team
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 Forschungszentrum Jülich (HAICU Local ‘Information‘)

 Young Investigator Group at INM-1 (~3 FTEs)

 High Level Support Team (HLST) at JSC (~ 5 FTEs)

 Helmholtz Zentrum München (HMGU) 
(HAICU Central ‘Health‘)

 Karlsruhe Institute of Technology (KIT) 
(HAICU Local ‘Energy’)

 Helmholtz-Zentrum Geesthacht (HZG) 
(HAICU Local ‘Earth & Environment‘)

 Helmholtz-Zentrum Dresden Rossendorf (HZDR)
(HAICU Local ‘Matter‘)

 German Aerospace Center (DLR) 
(HAICU Local ‘Aeronautic/Space & Transport‘)

AI COOPERATION IN HELMHOLTZ

Seite 10

Local HLST
HAICU YIG 4

Local HLST
HAICU YIG 5

Local HLST
HAICU YIG 1

Local HLST
HAICU YIG 2

Local HLST
HAICU YIG 3

Information

Matter

Energy

Aeronautics, Space 
and Transport

Health

Earth & Environment

[4] HAICU Web Page

FZJ
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Helmholtz Artificial Intelligence Cooperation Unit (HAICU)

~11.4 million € / year
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DEEP SERIES OF PROJECTS
EU Projects Driven by Co-Design of HPC Applications

 3 EU Exascale projects
DEEP, DEEP-ER, DEEP-EST

 27 partners
Coordinated by JSC

 EU-funding: 30 M€
JSC-part > 5,3 M€ 

 Nov 2011 – Dec 2020

Juelich Supercomputing Centre
implements the DEEP projects designs
in its HPC production infrastructure

Strong collaboration
with our industry partners 
Intel, Extoll & Megware

Page 11
[5] DEEP Projects Web Page
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IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC DESIGN

Page 12

Co-Design via Requirements from Machine/Deep Learning Applications & Innovative Simulation Sciences

[5] DEEP Project Web pageThe modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads
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DRIVING INNOVATIVE HPC FOR MACHINE LEARNING
Co-Design of Innovative HPC Memory Designs and GPU/CPU Communications in Modular Supercomputing

The modular supercomputing architecture (MSA)
enables a flexible HPC system design co-designed
by the need of different application workloads

[26] E. Erlingsson, M. Riedel et al., 
IEEE MIPRO Conference, 2018

Explore Network Attached Memory (NAM)

Explore more scalability with NVIDIA GPUDirect beyond 
one node compared to NVIDIA NVLink/NVSwitch ‘islands‘

Page 1323th August 2019



JSC
Modular
Supercomputing
Roadmap

General Purpose Cluster

File 
Server
GPFS, 
Lustre

IBM Power 6 
JUMP, 9 TFlop/s

IBM Blue Gene/P
JUGENE, 1 PFlop/s

HPC-FF
100 TFlop/s

JUROPA
200 TFlop/s

IBM Blue Gene/Q
JUQUEEN (2012)
5.9 PFlop/s

IBM Blue Gene/L
JUBL, 45 TFlop/s

IBM Power 4+
JUMP (2004), 9 TFlop/s

Highly scalable

Hierarchical
Storage Server JUWELS Scalable

Module (2019/20)
50+ PFlop/s

JUWELS Cluster 
Module (2018)
12 PFlop/s

JURECA Cluster 
(2015) 2.2 PFlop/s

JURECA Booster 
(2017) 5 PFlop/s
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MACHINE LEARNING & DEEP LEARNING FUNDAMENTALS

Page 15

Learning approaches & Relationship HPC, Deep Learning & Big Data
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ARTIFICIAL INTELLIGENCE OVERVIEW
Terminology & Methods

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning (DL)

A wide area of techniques and tools that enable 
computers to mimic human behaviour (+ robotics)

Learning from data without explicitly being
programmed with common programming languages

Systems with the ability to learn underlying
features in data using large neural networks

Classification

Clustering

Regression
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LEARNING APPROACHES
What means learning from data?

 The basic meaning of learning is ‘to use a set of observations to uncover an underlying process or pattern in the dataset‘
 The three different learning approaches can be roughly categorized in supervised, unsupervised, and reinforcement learning

 Supervised Learning
 Majority of methods follow this approach as groundtruth or labels exist to guide the learning best
 Example: credit card approval based on previous customer applications

 Unsupervised Learning
 Often applied before other learning  higher level data representation & data exploration process
 Example: Coin recognition in vending machine based on weight and size

 Reinforcement Learning
 Typical ‘human way‘ of learning
 Example: Toddler tries to touch a hot cup of tea (again and again)

Page 1723th August 2019



LEARNING APPROACHES
Supervised Learning

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

 Each observation of the predictor measurement(s) has 
an associated response measurement:
 Input
 Output
 Data 

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future observations
 Inference: Aims to better understanding the relationship between the response and the predictors
 Relatively straightforward to apply when the quality of labels are good

Page 1823th August 2019

Classification

[6] Image sources: Species Iris Group of 
North America Database, www.signa.org  



LEARNING APPROACHES
Unsupervised Learning

 Unsupervised learning approaches seek to understand relationships between the observations
 Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.
 Unupervised learning works with data = [input, ---]

 Each observation of the predictor measurement(s) has 
no associated response measurement:
 Input
 No output
 Data 

 Goal: Seek to understand relationships between the observations
 Clustering analysis: check whether the observations fall into distinct groups
 Challenge: No response/output that could supervise our data analysis
 Challenge: Clustering groups that overlap might be hardly recognized as distinct group

Page 1923th August 2019

Clustering



LEARNING APPROACHES
Reinforcement Learning

 Reinforcement learning approaches learn through iterations using the grading output as guide
 Reinforcement learning approaches are used in playing game algorithms (e.g backgammon)
 Unupervised learning works with data = [input, some output, grade for this output]

 Each observation of the predictor measurement(s) has 
some associated response measurement:
 Input
 Some output & grade of the output
 Data 

 Goal: Learn through iterations
 Guided by output grade: check learning and compare with grade
 Challenge: Iterations may require lots of CPU time (e.g. backgammon playing rounds)
 Challenge: Usually considered as a complicated learning approach but with applications in gaming

Page 2023th August 2019

Learn to play games

[7] Video source: Google DeepMind’s
Deep Q-learning playing Atari Breakout



INNOVATIVE DEEP LEARNING TECHNOLOGIES
Short Introduction & Role of Cross-Sectional Team Deep Learning @ JSC

 Provide deep learning tools that work with HPC machines (e.g. Python/Keras/Tensorflow)
 Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST, SMITH, etc.)
 Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch, ON4OFF)
 Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)
 Cooperate in a artificial intelligence network across Helmholtz Association (e.g. HAICU)

Page 21

[8] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network‘, 
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[10] H. Lee et al., ‘Convolutional 
Deep Belief Networks for 
Scalable Unsupervised 
Learning of Hierarchical 
Representations’

Cross-
Sectional 

Team Deep 
Learning

[9] M. Riedel et al., ‘Introduction to Deep Learning Models‘, 
JSC Tutorial, three days, JSC, 2019
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DEEP LEARNING TECHNIQUE EXAMPLE
Convolutional Neural Network (CNN) for Image Analysis

Page 22

[11] Video Source: Neural Network 3D Simulation

[12] A. Rosebrock

 Innovation via specific layers and architecture types

23th August 2019



ARTIFICIAL INTELLIGENCE – COMPLEX RELATIONSHIPS
Big Data & Machine/Deep Learning & HPC

SVMs
Random
Forests

M
od
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Dataset Volume

Large Deep Learning Networks

Medium Deep Learning Networks

Small Neural Networks

Traditional Learning Models

 ‘Big Data‘

‘small datasets‘

manual feature
engineering‘
changes the

ordering

MatLab
Statistical 
Computing with R

Training
Time

OctaveWekascikit-learn

High Performance 
Computing & Cloud 

Computing

[13] www.big-data.tips

JURECA

Horovod
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DEEP LEARNING APPLICATION EXAMPLE

1952 Stochastic Gradient
Descent
• Solving optimization

problems
1958

Deep Convolutional 
Neural Networks
• Significant 

improvements in
image analysis

1995

…
…

Perceptron Learning
Model
• Learning

weights

1985 ‘Backpropagation of Error‘ 
approch in learning
• Artificial Neural

Networks

Big Data
• Large datasets
• Easy access
• More storage

for less cost

Hardware
• More memory
• Graphical 

Processing 
Units (GPUs)

• HPC & parallel
systems

Software
• Scalable data

science tools
• New learning 

models
• Open Source &

free software
packages

[25] Keras

[26] TensorFlow[24] NVIDIA
[14] soccerwatch.tv

Combination: Start-up Example of my research group
Impact in AI & HPC 
in industry & science

Understanding the Different Factors that all Combined Provide new Chances – NOW 
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MOTIVATION FOR NEURAL ARCHITECTURE SEARCH (NAS)

Page 25

Growing Complexity of Machine Learning Model Parameters, Hyper-Parameters & Architectures
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UNSUPERVISED LEARNING MODEL FOR CLUSTERING
Example: Parallel & Scalable Density-based Spatial Clustering of Applications with Noise (DBSCAN)

[15] M. Goetz and M. Riedel et al, Proceedings IEEE 
Supercomputing  Conference, 2015

Page 2623th August 2019

 Find right set of 2 parameters for application
 1 Parameter: Minimum number of points
 2 Parameter: Epsilon Neighbourhood
 Needs already HPC to be efficient in searching 

the right set of parameters, e.g. particle swarm 
optimization (evolutionary algorithm)



SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Page 27

Example: Parallel and Scalable Support Vector Machine (SVM) – using Radial Basis Function (RBF) Kernel

Parallel & Scalable Feature Engineering with Component Trees

[16] M. Goetz and M. Riedel et al., Journal of Transactions on Parallel 
and Distributed Systems, 2018 [17] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied 

Earth Observation and Remote Sensing, 2015

Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

First Result: best parameter set from 14.41 min to 1.02 min
Second Result: all parameter sets from ~9 hours to ~35 min

23th August 2019

 Find right set of 2 parameters for application
 1 Parameter: RBF Parameter Gamma
 2 Parameter: Cost of Error allowed for soft margin
 Needs already HPC to be efficient in searching the 

right set of parameters, e.g. gridsearch using partly 
also community experience in applications



SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Page 28

Example: Parallel & Scalable Deep Learning with Convolutional Neural Networks (CNNs)

Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

[18] J. Lange and M. Riedel et al., 
IGARSS Conference, 2018

Find Hyperparameters given rare labeled/annotated data 
in science (e.g. 36,000 vs. 14,197,122 images ImageNet)

23th August 2019

 Find right set of hyper-parameters and the right 
neural network architecture is a manual time-
consuming and error-prone process

 Needs urgently HPC, but a systematic and 
automated way is required as trying out all options 
of hyper-parameters and architectures is 
computationally infeasible

 What is the right optimization method?

 How many convolutional layers we need?

 How many neurons in dense layers?

 What is the right filter size?

 How do we train best?



SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Page 29

Example: Parallel & Scalable Deep Learning with Autoencoders 

[19] J. Haut, G. Cavallaro and M. Riedel et al.,
IEEE Transactions on Geoscience and Remote Sensing, 2019

Using Autoencoder deep 
neural networks with Cloud 
computing & Apache Spark

[20] Apache Spark Web page

23th August 2019

 Find right set of hyper-parameters and the right 
neural network architecture for autoencoder is a 
manual time-consuming and error-prone process

 Needs urgently HPC, but a systematic and 
automated way is required as trying out all options 
of hyper-parameters and architectures is 
computationally infeasible

 As resolutions of sensors becomes better and 
more data is available it is likely that the learning 
model will be increasingly complex in the future 
that in turn raises demands for automated 
architecture search and meta-learning approaches



NEURAL ARCHITECTURE SEARCH (NAS)

Page 30

Fundamentals & Examples & Using Reinforcement Learning Techniques
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NEURAL ARCHITECTURE SEARCH (NAS) OVERVIEW
Methods for Automated Neural Network Architecture Engineering

Search Space
Search Strategy

Performance
Estimation
Strategy

Architecture

performance estimate of A

Page 3123th August 2019

[21] T. Elsken et al., Neural Architecture Search: A 
Survey, Journal of Machine Learning Research, 2019

 Employed neural networks architectures are often developed manually by human experts that is time-consuming and error-prone
 Deep learning success has been accompanied by a rising demand for architecture engineering, where increasingly more complex neural architectures are 

designed manually
 Neural Architecture Search (NAS) methods can be categorized in (a) search space, (b) search strategy, and (c) performance estimation strategy
 Automated Neural Architecture (NAS) search methods aim to solve this problem as a process of automating Architecture engineering

[24] Neural Architecture Search Research



NEURAL ARCHITECTURE SEARCH
Understanding the Search Space & Using Prior Knowledge Example

Search Space
Search Strategy

Performance
Estimation
Strategy

Architecture

performance estimate of A

Page 3223th August 2019

[21] T. Elsken et al., Neural Architecture Search: A Survey, Journal of Machine Learning Research, 2019

 Search space defines which neural network architectures can be represented in principle
 Reduce the size of the search space to simplify the search by incorporating prior knowledge about typical properties of architectures 
 Be aware that using prior knowledge also might introduce a human bias thus preventing finding novel neural network architectures

(using prior knowledge  typical property 
of neural network architecture for image analysis)

(using prior knowledge  are these useful?)



NEURAL ARCHITECTURE SEARCH
Understanding the Search Space & Common Search Space Examples for CNNs

Search Space

Page 3323th August 2019

[21] T. Elsken et al., Neural Architecture Search: 
A Survey, Journal of Machine Learning Research, 2019

 Each node in the graphs corresponds to a layer in a convolutional 
neural network (CNN), e.g. convolutional or pooling layer

 Different layer types are visualized by different colors
 Example Architecture A1: Element of a chain-structured space
 Example Architecture A2: element of a more complex search space with 

additional layer types and multiple branches and skip connections

(using prior knowledge  e.g. here no time series)

A1 A2?



NEURAL ARCHITECTURE SEARCH
Understanding Layer Parameters & Complexity in Setting Parameter Values for Automated Search 

Page 3423th August 2019

[25] B. Baker et al., ‘Designing Neural Network Architectures using Reinforcement Learning’, 2017
[21] T. Elsken et al., Neural Architecture Search: 
A Survey, Journal of Machine Learning Research, 2019

?

?



NEURAL ARCHITECTURE SEARCH
Understanding the Search Space & Cells instead of whole architectures 

Search Space

Page 3523th August 2019

[21] T. Elsken et al., Neural Architecture Search: 
A Survey, Journal of Machine Learning Research, 2019

 Example illustrations of the cell search space with 
two different cells (not whole neural network 
architectures)  many design choices for the 
overall ‘macro architecture’ of the network

 Approach: a whole neural network architecture 
can be built by stacking the cells sequentially

 Complex approach: Cells can also be combined in 
a more complex approach: e.g., in multi-branch 
spaces by simply replacing layers

re-use cell x ?

 Simplicity: Search space is drastically reduced 
(less layers  ~ 7 x speed-up vs. full architectures
in some recent work examples)

 Reusability: Architectures built from cells can more 
easily be transferred or adapted to other datasets

 Repitition: Creating architectures by repeating 
building blocks has proven a useful design (e.g. 
CNN with N x convolution, pooling layers, etc. )



NEURAL ARCHITECTURE SEARCH
Computational Complexity & Number of Parameters of Known Architectures

[23] B. Zoph et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

Page 3623th August 2019

 Further complexity in choosing 
HPC system features (e.g. 
Network Attached Memory, 
parallel file-systems, etc.)

 Computing Impact in various 
GPU architectures like Kepler, 
Pascal, Volta



NEURAL ARCHITECTURE SEARCH
Understanding the Search Strategy

Search Space
Search Strategy

Performance
Estimation
Strategy

Architecture

performance estimate of A

Page 3723th August 2019

 Search strategy details how to explore the search 
space (which is often exponentially large or even 
unbounded)

 (a) it is desirable to find well-performing 
architectures quickly

 (b) premature convergence to a region of suboptimal 
architectures should be avoided

 Search strategy encompasses the classical 
exploration-exploitation trade-off: (a) vs (b)

[21] T. Elsken et al., Neural Architecture Search: 
A Survey, Journal of Machine Learning Research, 2019

(different search strategies to explore the space of neural network architectures in addition to random search)

Reinforcement Learning Gradient-Based Methods

Bayesian Optimization Evolutionary Methods

 Generation of an architecture can
be considered as agent‘s action
with space identical with neural
architecture search space and rewards are 
used to guide the process

 Optimize network weights & architecture 
by alternating gradient descent steps on 
training data for weights & validation data 
for architectural parameters

 Evolve a population of neural 
architecutres & in every evolution step a 
model from the population is sampled 
and serves as parent to generate 
offsprings & mutations

 Central idea of Bayesian optimization is to 
build a neural network architecture that 
can be updated and queried to drive 
optimization decisions, also assuming e.g. 
distributions (i.e., priors)



LEARNING APPROACHES – REVISITED FOR NAS
Reinforcement Learning

 Reinforcement learning approaches learn through iterations using the grading output as guide
 Reinforcement learning approaches are used in playing game algorithms (e.g backgammon)
 Unupervised learning works with data = [input, some output, grade for this output]

 Each observation of the predictor measurement(s) has 
some associated response measurement:
 Input
 Some output & grade of the output
 Data 

 Goal: Learn through iterations
 Guided by output grade: check learning and compare with grade
 Challenge: Iterations may require lots of CPU time (e.g. backgammon playing rounds)
 Challenge: Usually considered as a complicated learning approach but with applications in gaming

Page 3823th August 2019

Learn to play games

[7] Video source: Google DeepMind’s
Deep Q-learning playing Atari Breakout



NEURAL ARCHITECTURE SEARCH
Using Reinforcement Learning Techniques - Understanding Controllers

[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017

Page 3923th August 2019

 Recurrent Neural Networks (RNNs) can handle sequence data
 Idea: CNNs are essentially a sequence of layers
 Controller (RNN) generete hyper-parameters as a sequence



NEURAL ARCHITECTURE SEARCH
Using Reinforcement Learning Techniques – Understanding Neural Architecture vs. RNN Structure

[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017
Page 4023th August 2019



NEURAL ARCHITECTURE SEARCH
Using Reinforcement Learning Techniques – Understanding Agents

Page 4123th August 2019

[25] B. Baker et al., ‘Designing Neural Network Architectures using Reinforcement Learning’, 2017

 Generation of an architecture can be considered as agent‘s 
action with space identical with neural architecture search 
space and rewards are used to guide the process

(peform distributed training of NAS)



NEURAL ARCHITECTURE SEARCH
Using Reinforcement Learning Techniques – Understanding Distributed Training

[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017

Page 4223th August 2019

 Distributed training for Neural Architecture Search can use a set of S parameter servers
 Parameter servers store and send parameters to K controller replicas
 Each controller replica then samples m architectures and run the multiple child models in parallel
 Accuracy of each child model is recorded to compute the gradients with respect to parameters
 In turn sent back to the parameter servers

(each controller replica
then samples m architectures)



NEURAL ARCHITECTURE SEARCH
Using Reinforcement Learning Techniques and InstaNAS (multiple Neural Network Architecture Instances)

[22] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018

Page 4323th August 2019

 Often a Recurrent 
Neural Network 
(RNN) technique 
that performs the 
agent steps

 Derived specific 
architectures that 
perform good for 
specific dataset 
samples

 E.g. what is the accuracy or 
error rate we obtain as 
metric to guide the search 
for specific architectures for 
specific dataset samples

 E.g. what is the latency 
of the network for a 
given dataset sample to 
guide the search for 
specific architectures 
that offer better latency 
by keeping accuracy(!)



NEURAL ARCHITECTURE SEARCH
Understanding the Performance Estimation Strategy

Search Space
Search Strategy

Performance
Estimation
Strategy

Architecture

performance estimate of A

Page 4423th August 2019

 Objective of neural architecture search is typically to find architectures that achieve high predictive performance on unseen data
 Performance Estimation refers to the process of estimating this performance and the usefulness of the architecture that has been ‘found/explored’
 Simplest option: perform a standard training and validation of the architecture on data  unfortunately computationally expensive (even with HPC!)
 Simplest option thus limits the number of neural network architectures that can be explored or apply a number of speed-up methods

[21] T. Elsken et al., Neural Architecture Search: A Survey, Journal of Machine Learning Research, 2019

(recent research focuses on developing methods that
reduce the cost of these performance estimations)

(accuracy? error-rate? 
latency?)



SUMMARY
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Neural Architecture Search (NAS) is a vibrant new research field
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SUMMARY
Neural Architecture Search (NAS) is a vibrant new research field

Page 4623th August 2019

 High Performance Computing & Machine Learning more intertwined today
 GPUs can significantly speed-up the training of machine and deep learning models

 Recent Deep Learning models have tremendous success in many application areas
 Pro: Manual feature engineering processes is often automated using automated feature learning
 Contra: Employed neural network architectures are still often developed manually by human experts
 Lessons learned: Manual time-consuming and error-prone process shifted to architecture engineering

 Automated Neural Architecture Search
 Need since there is a growing number of fine-tuned architectures with a high number of hyper-parameters
 Approaches differ in (a) search space, (b) search strategy, and (c) performance estimation strategy
 Reinforcement Learning for NAS is just one of the possible search strategies, but a promising technique
 Overlaps with meta-learning and hyper-parameter optimization approaches and subfield of AutoML
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