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OUTLINE

= Machine Learning & High Performance Computing (HPC)
» @ Juelich Supercomputing Centre (JSC) & University of Iceland & Modular Supercomputing

= Machine Learning & Deep Learning Fundamentals
= Learning approaches & Relationship HPC, Deep Learning & Big Data

= Motivation for Neural Architecture Search (NAS)
= Growing Complexity of Machine Learning Model Parameters, Hyper-Parameters & Architectures
= Traditional Search Approaches & Challenges using Remote Sensing Application Examples

= Neural Architecture Search Aproaches

* Fundamentals & Overlap with Hyper-Parameter Optimization & Meta-Learning

= Using Reinforcement Learning Techniques & Examples

= Summary
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MACHINE LEARNING & HIGH PERFORMANCE COMPUTING

@ Juelich Supercomputing Centre (JSC) & University of Iceland & Modular Supercomputing
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JUELICH SUPERCOMPUTING CENTRE (JSC)

Institute of Multi-Disciplinary Research Centre Juelich of the Helmholtz Association in Germany

= Selected Facts

= One of EU largest
inter-disciplinary

research centres

~ —
9 h _ 4

(~5000 employees) HELMi"OLTZ
= Special expertise in physics, materials science, nanotechnology, RESEARCH FOR GRAND CHALLENGES
neuroscience and medicine & information technology (HPC & Data) [1] Holmholtz Association Web Page
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Morris Riedel @MorrisRiedel - Aug 15 v 1 You Retweeted
€ The University of Iceland is one of the six best universities in the world in the field o Uniiversity of Iceland @uni_iceland - Jun 7 >
" of remote sensing! =
EX

It is extremely inspiring to be among the top 25 performers worldwide in

& Haskoli islands @Haskoli_Islands - Aug 14 internationally in collaboration with industry and international universities

- - - Haskoli fslands er i 6. szeti yfir fremstu haskola heims 4 svidi fjarksnnunar worldwide, according to a new evaluation from U-Multirank.
Sc h ool of E n g I n ee rl n g & N atu ra I S c I e n ces (S E N S) samkvaemt hinum virta Shanghai-lista. Skélinn er enn fremur i hépi hundrad
bestu haskélanna innan jardvisinda. Frabaerar fréttir fyrir starfsmenn, stidenta
og samfélagid allt! english.hi.is/news/at_the_fo...

hi.is/frettir/haskol...

2019 2019

TOP 25 PERFORMER TOP 25 PERFORMER
@& multirank @Y multirank

= Selected Facts

= Ranked among the top 300
universities in the world
(by Times Higher Education)

11 You Retweeted
:

University of Iceland @uni_iceland - Jun 4 v

= ~2900 students at the
SENS school

¢ A nasal spray for the acute treatment of seizures, developed by professor
Sveinbjérn Gizurarson at @uni_iceland, was approved by the United States FDA,
recently; the first of its kind for this disease.

english.hi.is/news/universit...

= Long collaboration with
Forschungszentrum Juelich

= ~350 MS students & ~150 PhD students

= Many foreign & Erasmus students; english courses

CRSITy

S
SPREY. UNIVERSITY OF ICELAND . .
g)) SCHOOL OF ENGINEERING AND NATURAL SCIENCES [2] Unlvers’ty of Iceland Web page

Dise3e
FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE
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UNDERSTANDING HIGH PERFORMANCE COMPUTING
In Comparison with High Throughput Computing

High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques
through specific support with dedicated hardware such as high performance cpu/core interconnections

E@D ... >
network
@ interconnection

important

High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that
enable the execution of ‘farming jobs’ without providing a high performance interconnection between the cpu/cores

I I 3 B ] [
J UJMJ @%@c network [ [ [

interconnection
less important!
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HPC & DATA SCIENCE: A FIELD OF CONSTANT EVOLUTION

Perspective: Floating Point Operations
per one second (FLOPS or FLOP/s)

1.000.000 FLOP/s

1 GigaFlop/s = 10° FLOPS
1 TeraFlop/s = 10'2 FLOPS
1 PetaFlop/s = 105 FLOPS
1 ExaFlop/s = 1018 FLOPS

© Photograph by Rama,
Wikimedia Commons

1.000.000.000.000.000 FLOP/s
~295.000 cores~2009 (JUGENE)

>5.900.000.000.000.008
FLOP/s '
~ 500.000 cores
~2013 = end of service M8 .y

NEtD mﬂﬁ%m
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GERMAN GAUSS CENTRE FOR SUPERCOMPUTING

Alliance of the three national supercomputing centres HLRS (Stuttgart), JSC (Juelich) & LRZ (Munich)

‘!M = Supercomputer JUWELS @ JSC

= Juelich Wizard for European Leadership Science (JUWELS)

e |
-

= Cluster architecture based on commodity multi-core CPUs

= 2,550 compute nodes: two Intel Xeon 24-core Skylake CPUs & 48
accelerated compute nodes (4 NVIDIA Volta GPUs)

= Supercomputer SuperMUC @ LRZ
= 155,000 cores

= Supercomputer Hazel Hen @HLRS
= 185,088 compute cores PRACE

[3] GCS Web page

= GCS represents Germany in PRACE
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JUELICH SUPERCOMPUTING CENTRE (JSC) OF FZJ

Simulation & Data Labs (SDL) using High Performance Computing (HPC) @% *s_Smart Data

Communities Innovation Lab
Research R (e.g. remote
Group High Rg:::rc;h %@ sensing & ™M |
Productivity P ;

ettt DEEP-EST
health) S e o
Data

, : PROJECT
Processing
SS,
SPREY. UNIVERSITY OF ICELAND
g))’é SCHOOL OF ENGINEERING AND NATURAL SCIENCES
Oisead”

FACULTY OF INDUSTRIAL ENGINEERING,
MECHANICAL ENGINEERING AND COMPUTER SCIENCE

IJ JULICH | 2 ouumme

Forschungszentrum CENTRE

Cross-
Sectional
Team Deep
Learning

I\

HELMHOLTZ
ARTIFICIAL INTELLIGENCE

COOPERATION UNIT Modular Modular Industry
o Supercomputer Supercomputer Relations

IR JURECA Facilities JUWELS Team

't
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Al COOPERATION IN HELMHOLTZ

Helmholtz Artificial Intelligence Cooperation Unit (HAICU) H

®  Forschungszentrum lJiilich (HAICU Local ‘Information’) m ;:ucca&fz; Y
* Young Investigator Group at INM-1 (~3 FTEs) ‘ .
* High Level Support Team (HLST) at JSC (~ 5 FTEs)

®  Helmholtz Zentrum Miinchen (HMGU) ﬁcal HLST sl HLSE
(HAICU Central ‘Health’) HAICUYIGS HAICU YIG 5

= Karlsruhe Institute of Technology (KIT)
(HAICU Local ‘Energy’)

= Helmholtz-Zentrum Geesthacht (HZG) ‘ ‘
(HAICU Local ‘Earth & Environment’)

®  Helmholtz-Zentrum Dresden Rossendorf (HZDR)
(HAICU Local ‘Matter’) @ oo el ST = HLSTH

=  German Aerospace Center (DLR) O WVatter HAICUYIG 2 HAICU YIG 1
(HAICU Local ‘Aeronautic/Space & Transport’) Energy

~11.4 million €/ year @ nformation m HELMHOLTZ I I | |
W H CU ‘ ::'II:I':I’:;?I'\-EIZNTELLIGENCE [4] HAICU Web Page Aeronautics, Space

COOPERATION UNIT
and Transport
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DEEP SERIES OF PROJECTS

EU Projects Driven by Co-Design of HPC Applications

= 3 EU Exascale projects
DEEP, DEEP-ER, DEEP-EST

= 27 partners
Coordinated by JSC

= EU-funding: 30 M€
JSC-part > 5,3 M€

® Nov 2011 - Dec 2020

Sate
:%i;? UNIVERSITY OF ICELAND
%tq

Strong collaboration —
with our industry partners C( Come
Intel, Extoll & Megware

Juelich Supercomputing Centre
implements the DEEP projects designs
in its HPC production infrastructure
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[5] DEEP Projects Web Page



IMPACTS OF ARTIFICIAL INTELLIGENCE IN HPC DESIGN

Co-Design via Requirements from Machine/Deep Learning Applications & Innovative Simulation Sciences
DEEPr
Profects

~ Module 1
- Central
' Cluste

High Energy Physics Earth Science Space Weather

Module 5
NETWORK
FEDERATION Data Analytics Module Deep X
oaTa o Learning

Molecular Dynamics Neuroscience Radio Astronomy oRdGE ANALYTICS /" \ | D workflow

SERVICE RODULE o

MODULE ]1

k";. Module 4 Module
Quantum Neuromorphic .
HBP Annealer system  Climatology
workflow

Data Analytics QN QN |
workflow @ g

ekt

CIEEIEE
S
ESSES

A

The modular supercomputing architecture (MSA) [5] DEEP Project Web page
enables a flexible HPC system design co-designed
by the need of different application workloads
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DRIVING INNOVATIVE HPC FOR MACHINE LEARNING

Co-Design of Innovative HPC Memory Designs and GPU/CPU Communications in Modular Supercomputing

.......

EeP |- L) (o
is —t H i i Mem. BW PCle gen3 x 16 =
\ or 4 ~100 GByte/s 16 GB/s Mem. BW
. < s CPU Accelerator | 900 B/s e
. ' ARCTTPPELL -
u
e As of today, PCle gen3 restricts
w achievable latency and bandwidth

Explore more scalability with NVIDIA GPUDirect beyond
one node compared to NVIDIA NVLink/NVSwitch ‘islands’

Conventional CPU/GPGPU Optimized CPU/GPGPU
Offload Offload
DATA
ANALYTICS m\ @ Data
Data

MODULE
NW

NW
Results comm. Results

comm. e ¥
—p
E Data A

Explore Network Attached Memory (NAM)

NETWORK
FEDERATION

SCALABLE
STORAGE
SERYICE
MODULE

a)ndwo)

P1 P2 P3 P4 PS

jouiey|

jousay

»—
|/i/o 1/0 |/c;/o

|

% NAM )
BEEEF =] 3
P1 P2 P3 P4 PS5 E .(}\ E Data NW Results
comm. E—
g —
=
The modular supercomputing architecture (MSA) W Results et
[26] E. Erlingsson, M. Riedel et al., enables a flexible HPC system design co-designed comm. E 3
IEEE MIPRO Conference, 2018 by the need of different application workloads -
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JSC

IBM Power 4+
JUMP (2004), 9 TFlop/s

Modular BM P 6
] ower IBM Blue Gene/L
;up:rcomputlng JUMP, 9 TFlop/s JUBL, 45 TFlop/s
oadma
P JUROPA IBM Blue Gene/P
200 TFlop/s JUGENE, 1 PFlop/s

HPC-FF = EEEEe
100 TFlop/s = B

IBM Blue Gene/Q
JUQUEEN (2012)

JURECA Cluster 5.9 PFlop/s

(2015) 2.2 PFlop/s

@& nvipia,

JURECA Booster
(2017) 5 PFlop/s

JUWELS Cluster, Hierarchica

Module (2018) Sto[ﬁ%e Server JUWELS Scalable

12 PFlop/s s dular Module (2019/20)
Upercompyter 50+ PFlop/s

Boi

General Purpose Cluster Highly scalable

PARTEC co%ggwtgzce
( CENTER
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MACHINE LEARNING & DEEP LEARNING FUNDAMENTALS

Learning approaches & Relationship HPC, Deep Learning & Big Data
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ARTIFICIAL INTELLIGENCE OVERVIEW

Terminology & Methods

Artificial Intelligence (Al)

A wide area of techniques and tools that enable
computers to mimic human behaviour (+ robotics)

Classification

Machine Learning (ML)

Learning from data without explicitly being
programmed with common programming languages

Deep Learning (DL)

Systems with the ability to learn underlying
features in data using large neural networks

Clustering

Regression

23" August 2019 Page 16




LEARNING APPROACHES

What means learning from data?

" The basic meaning of learning is ‘to use a set of observations to uncover an underlying process or pattern in the dataset’
. The three different learning approaches can be roughly categorized in supervised, unsupervised, and reinforcement learning

= Supervised Learning
= Majority of methods follow this approach as groundtruth or labels exist to guide the learning best
= Example: credit card approval based on previous customer applications

= Unsupervised Learning
= Often applied before other learning = higher level data representation & data exploration process
= Example: Coin recognition in vending machine based on weight and size

= Reinforcement Learning
= Typical ‘human way’ of learning

= Example: Toddler tries to touch a hot cup of tea (again and again)
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LEARNING APPROACHES

Supervised Learning

Classification

* Each observation of the predictor measurement(s) has o’

an associated response measurement: _‘

" lInput X=12,,..,2, — Sy
* Output y,.i=1,.,n Narth Amorin Datanase, whww.somocard #

= Data (X17y1)7"'7(XN7yN)
= Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future observations
= |Inference: Aims to better understanding the relationship between the response and the predictors

= Relatively straightforward to apply when the quality of labels are good

Supervised learning approaches fits a model that related the response to the predictors
Supervised learning approaches are used in classification algorithms such as SVMs
Supervised learning works with data = [input, correct output]
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LEARNING APPROACHES

Unsupervised Learning

* Each observation of the predictor measurement(s) has
no associated response measurement:
" lnput X=2,,..,T,
= No output
= Data (x,),...,(x,)
= Goal: Seek to understand relationships between the observations
= Clustering analysis: check whether the observations fall into distinct groups

= Challenge: No response/output that could supervise our data analysis

= Challenge: Clustering groups that overlap might be hardly recognized as distinct group

Unsupervised learning approaches seek to understand relationships between the observations
Unsupervised learning approaches are used in clustering algorithms such as k-means, etc.
Unupervised learning works with data = [input, ---]

23" August 2019 Page 19
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LEARNING APPROACHES

Reinforcement Learning

Learn to play games

= Each observation of the predictor measurement(s) has
some associated response measurement:

" lnput X=2,,..,T,
[7] Video source: Google DeepMind'’s

Deep Q-learning playing Atari Breakout

= Data (Xx,),...,(x,)

= Goal: Learn through iterations

= Guided by output grade: check learning and compare with grade
= Challenge: Iterations may require lots of CPU time (e.g. backgammon playing rounds)

= Challenge: Usually considered as a complicated learning approach but with applications in gaming

" Reinforcement learning approaches learn through iterations using the grading output as guide
" Reinforcement learning approaches are used in playing game algorithms (e.g backgammon)
" Unupervised learning works with data = [input, some output, grade for this output]
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INNOVATIVE DEEP LEARNING TECHNOLOGIES

Short Introduction & Role of Cross-Sectional Team Deep Learning @ JSC

Cross-
Sectional

Team Deep
Learning

Engeneer

Transform Traditional

" Learn

1 Reduce Machine
2 Learning
»

" Learn Deep
. 1sdo Learning
N .\ 2 =

" 1s8o0 L

[8] M. Riedel, ‘Deep Learning - Using a Convolutional Neural Network’,
Invited YouTube Lecture, six lectures, University of Ghent, 2017

[9] M. Riedel et al., ‘Introduction to Deep Learning Models’,
JSC Tutorial, three days, JSC, 2019

9 JULICH

Forschungszentrum

N
JULICH ‘ ‘ '
SUPERCOMPUTING

[
CENTRE H c

HELMHOLTZ
ARTIFICIAL INTELLIGENCE
COOPERATION UNIT

Provide deep learning tools that work with HPC machines (e.g. Python/Keras/Tensorflow)
Advance deep learning applications and research on HPC prototypes (e.g. DEEP-EST, SMITH, etc.)
Engage with industry (industrial relations team) & support SMEs (e.g. Soccerwatch, ON4OFF)
Offer tutorials & application enabling support for commercial & scientific users (e.g. YouTube)
Cooperate in a artificial intelligence network across Helmholtz Association (e.g. HAICU)
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[10] H. Lee et al., ‘Convolutional
Deep Belief Networks for
Scalable Unsupervised

Learning of Hierarchical
Representations’



DEEP LEARNING TECHNIQUE EXAMPLE

Convolutional Neural Network (CNN) for Image Analysis

O HI /g A3 0] ¥ [3]
A3 e 1] 7] [ [F) 6] (5] M
R o
fEnpagegl DIEERICEINI
b=}
R EEE LD B nan A
# 6l 8 4 & f] Qlgl [l
ZI 1] el 3] 82 [/ 2]zl 8
g 8l el 75 R g0 e
2l Yl (& (g 0 [7] & 3] [/] 5]

Innovation via specific layers and architecture types

[12] A. Rosebrock

Dll[iJl]T

[11] Video Source: Neural Network 3D Simulation

_ "0,
AN U\ St
s T Se— NN ay N\
@ \\ connected A
feature extraction classification
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ARTIFICIAL INTELLIGENCE — COMPLEX RELATIONSHIPS

Big Data & Machine/Deep Learning & HPC

#GPUs  images/s  speedup  Performance per GPU [images/s]
A 1 55 1.0 55
Horovod 4 178 32 4.5
8 357 6.5 44.63
16 689 12.5 43.06
32 1230 224 38.44
64 2276 414 35.56 H
128 5562 101.1 4345 ngh Performance

‘small datasets*

Large Deep Learning Networks

Computing & Cloud
Computing

manual feature
engineering’
changes the
ordering

Small Neural Network

Traditional LearninﬂclModels

Model Performance / Accuracy

Random Q\}’ ‘%

Forests | |

~ 1\ /

o7 SRR o AFSRR]

MatLab
Statistical

Computing with R

scikit-learn Weka Octave

|
!

‘Dataset Volume

23" August 2019 Page 23

[13] www.big-data.tips

-> ‘Big Data‘



DEEP LEARNING APPLICATION EXAMPLE

Understanding the Different Factors that all Combined Provide new Chances — NOW

1952

1958

1985

1995

Stochastic Gradient

Descent

* Solving optimization
problems

Perceptron Learning

Model

* Learning
weights

‘Backpropagation of Error’

approch in learning

* Artificial Neural
Networks

Deep Convolutional

Neural Networks

« Significant
improvements in
image analysis

Impact in Al & HPC
in industry & science

23" August 2019

Big Data

Large datasets
Easy access
More storage
for less cost

I N — g
1 . \“//

Hardware

More memory .

Graphical
Processing
Units (GPUs)

HPC & parallel

systems

NVIDIAS

[24] NVIDIA

Software

Scalable data
science tools

* New learning
models

Open Source &
free software
packages

Keras
[25] Keras ““

Tensor
[26] TensorFlow

-
-
Pl
B
m D
=

oursBuRG eX I S T

Existenzgriandungen
aus der Wissenschaft

[14] soccerwatch.tv

Page 24
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MOTIVATION FOR NEURAL ARCHITECTURE SEARCH (NAS)

Growing Complexity of Machine Learning Model Parameters, Hyper-Parameters & Architectures
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UNSUPERVISED LEARNING MODEL FOR CLUSTERING

Example: Parallel & Scalable Density-based Spatial Clustering of Applications with Noise (DBSCAN)

.......

-.'._...-----..-.... ~ . 512 +Hybr|d DS1
L Y 256 | = Hybrid DS2
—=0 i 128 |+ MPIDS1 7
b order ] .
s Linear 7z
K - a 64 7
RTINS gl R - S g
o 32
[
© a 16
8
4
2
processor 1 processor 2 1
O o 7% ) 2 8 32 128 512
o) o1 O 0 number of cores
SO 7o
16 O”OO 51 () 2
> g O
ch‘,) Qss | Oz O 2
is 9
B (C08 jrocosor 1)=190 (e T P—

[15] M. Goetz and M. Riedel et al, Proceedings IEEE
Supercomputing Conference, 2015
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SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Example: Parallel and Scalable Support Vector Machine (SVM) — using Radial Basis Function (RBF) Kernel

CRRCRRNT R AR R aaa S e

gray-level

Parallel & Scalable Feature Engineering with Component Trees

[16] M. Goetz and M. Riedel et al., Journal of Transactions on Parallel
and Distributed Systems, 2018
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Scenario ‘pre-processed data‘, 10xCV serial: accuracy (min)

vI/C 1

10

100

1000

10000

2 4890 (18.81)
4 5753 (16.82)
8  64.18 (18.30)
16 68.37 (2321)
2 70.17 (34.45)

65.01 (19.57)
70.74 (13.94)
74.45 (15.04)
76.20 (21.88)
75.48 (34.76)

73.21 (20.11)
75.94 (13.53)
77.00 (14.41)
76.51 (20.69)
74.88 (34.05)

75.55 (22.53)
76.04 (14.04)
75.78 (14.65)
75.32 (19.60)
74.08 (34.03)

74.42 (21.21)
74.06 (15.55)
74.58 (14.92)
74.72 (19.66)
73.84 (38.78)

Scenario ‘pre-processed data‘, 10xCV parallel: accuracy (min)

Second Result: all parameter sets from ~9 hours to ~35 min

. ~¥IC 1 10 100 1000 10000
2 7526(1.02) 65.12(1.03) 73.18 (1.33) 75.76 (2.35) 74.53 (4.40)
.8 4 57,60 (1.03) 70.88 (1.02) 75.87 (1.03) 76.01 (1.33) 74.06 (2.35)
= 8 64.17 (1.02) 74.52 (1.03 ) 77.02 (1.02) 75.79 (1.04) 74.42 (1.34)
u 16  68.57 (1.33) 76.07 (1.33) 76.40 (1.34) 7526 (1.05) 74.53 (1.34)
e 32 7021 (1.33) 75.38 (1.34) 74.69 (1.34) 7391 (1.47) 73.73 (1.33)
W
First Result: best parameter set from 14.41 min to 1.02 min

[17] G. Cavallaro and M. Riedel et al., Journal of Selected Topics in Applied

Earth Observation and Remote Sensing, 2015



SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Example: Parallel & Scalable Deep Learning with Convolutional Neural Networks (CNNs)

B T 0e-

=  What is the right optimization method?

= How many convolutional layers we need?
= How many neurons in dense layers?
=  What is the right filter size?

=  How do we train best?

23t August 2019

Using Convolutional Neural Networks (CNNs)
with hyperspectral remote sensing image data

[18] J. Lange and M. Riedel et al.,
IGARSS Conference, 2018

Feature

Representation / Value

Conv. Layer Filters
Conv. Layer Filter size
Dense Layer Neurons

Optimizer
Loss Function
Activation Functions
Training Epochs
Batch Size
Learning Rate
Learning Rate Decay

48, 32, 32
(3,3,5), (3,3,5), (3,3,5)
128,128
SGD
mean squared error
RelU
600
50
1

5x10°°

Page 28

Input: . 1D Max Pooling Fully Connected Softmax Output:
Window Tensor 2D Convolution (spectral dimension) Flatten Layers Layer  Probabilities
= - ]
]
& '
@ o
] [ ] n o —>
D _ @\ ]
- > | 58
: & - n n o ——>
& . " . * ——>
@ ™ [ ] [ ] o —>
n ] ]
- - [ ]
L — — ™

3x

Find Hyperparameters given rare labeled/annotated data
in science (e.g. 36,000 vs. 14,197,122 images ImageNet)

»




SUPERVISED LEARNING MODEL FOR CLASSIFICATION

Example: Parallel & Scalable Deep Learning with Autoencoders

Client Node
Driver JVM

Spark Context

Controls spark.drivermemory RAM

Worker Node 1 Worker Node N
Data partitions [EMIEMEMIEN | | Data paritons ESNESNESNICH |
Node Memory Pool Node Memory Pool
Executor JVM #1 Executor JVM #1
Task #1 Task #1 Task #1 Task #1
Requires spark.task.cpus| Requires spark task.cpus Requires spark task.cpus | Requircs spark task.cpus
Controls spa torcores CPU cores and Controls spark. executor.cores CPU cores and
spark.executormemory RAM spark.executormemory RAM
Exceutor JVM #2 Exccutor JVM #2
Task #1 Task #1 Task #1 Task #1

Requires spark task.cpus || Requires spark task.cpus Requires spark. task.cpus | Requires spark tsk.cpus

Controls spark. executor.cores CPU cores and Controls spark. executor.cores CPU cores and
spark.executormemory RAM spark.executormemory RAM

0 days 00 hours 00 minutes
Sentinel-2 constellation:
summer solstice

— i — Masternode Collects the gradients and
reshaping into | load into Driver ~ Scheduler " the new gradient
[19] J. Haut, G. Cavallaro and M. Riedel et al., — = S iyies e
IEEE Transactions on Geoscience and Remote Sensing, 2019 Hy;g’;gf; X [ Ml ands into partitions ! |

original W Compressed W Reconsiructed W ~ T
Input representation Output ' Ry
X, S [RMbunds ¢ ERMew X! E[R™bands Y " i
i bl i j
@ ' @ Worker node. 1~ Worker node n Worker node N
7 \ - - i, - »d a ®d
LR e oaens . : ,
: O | X @ , Using Autoencoder deep S 3 lloe) o] i £ "] -
> K E - L rows rows rows
@& : . @ neural networks with Cloud p Qr ™ Performs the forward and Performs the forward and Performs the forward and
\ i backward of the neural o backward of the neural o backward of the neural
@ @ computing & Apache Spark o l R l o l
Input Mapping  Bottleneck Demapping Output =
Layer Layer Layer Layer Layer

[20] Apache Spark Web page [ ek | [ ek 7@

L - ¥ 2 - ¥ 2
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NEURAL ARCHITECTURE SEARCH (NAS)

Fundamentals & Examples & Using Reinforcement Learning Techniques
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NEURAL ARCHITECTURE SEARCH (NAS) OVERVIEW

Methods for Automated Neural Network Architecture Engineering

Architecture A € A

Search Space Performance
./4 p—! Search Strategy Estimation
Strategy

performance estimate of A

.....

"

T2

i

|

¢
QAR
Q l%%

;

j

j

l.

1

[24] Neural Architecture Search Research

R §4-4

[21] T. Elsken et al., Neural Architecture Search: A
Survey, Journal of Machine Learning Research, 2019

= Employed neural networks architectures are often developed manually by human experts that is time-consuming and error-prone
Deep learning success has been accompanied by a rising demand for architecture engineering, where increasingly more complex neural architectures are

designed manually
" Neural Architecture Search (NAS) methods can be categorized in (a) search space, (b) search strategy, and (c) performance estimation strategy

= Automated Neural Architecture (NAS) search methods aim to solve this problem as a process of automating Architecture engineering
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NEURAL ARCHITECTURE SEARCH

Understanding the Search Space & Using Prior Knowledge Example

Architecture A € A

Search Space Performance

.«4 p—! Search Strategy Estimation
Strategy

performance estimate of A

(using prior knowledge = typical property
of neural network architecture for image analysis)

IR % v
(using prior knowledge > are these useful?) +@m W@Q j@’\ h\-

[21] T. Elsken et al., Neural Architecture Search: A Survey, Journal of Machine Learning Research, 2019

= Search space defines which neural network architectures can be represented in principle
" Reduce the size of the search space to simplify the search by incorporating prior knowledge about typical properties of architectures
. Be aware that using prior knowledge also might introduce a human bias thus preventing finding novel neural network architectures
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NEURAL ARCHITECTURE SEARCH

Understanding the Search Space & Common Search Space Examples for CNNs
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(using prior knowledge = e.g. here no time series)

[21] T. Elsken et al., Neural Architecture Search:
A Survey, Journal of Machine Learning Research, 2019

= Each node in the graphs corresponds to a layer in a convolutional
neural network (CNN), e.g. convolutional or pooling layer

. Different layer types are visualized by different colors
=  Example Architecture A,: Element of a chain-structured space

= Example Architecture A,: element of a more complex search space with
additional layer types and multiple branches and skip connections
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NEURAL ARCHITECTURE SEARCH

Understanding Layer Parameters & Complexity in Setting Parameter Values for Automated Search

il’lpU.t o B . o o
& @ f 1 ..
AR
: ?
Ly
Layer Type Layer Parameters Parameter Values
l 2 1 ~ Layer depth <12
- f ~ Receptive field size Square. € {1,3,5}
Convolution (C) ¢ ~ Stride Square. Always equal to 1
d ~ # receptive fields € {64,128,256,512}
n ~ Representation size € {(00, 8], (8,4], (4,1]}
1 ~ Layer depth <12
Pooling (P) (f,€) ~ (Receptive field size, Strides) | Square. € {(5,3),(3,2), (2,2)}
n ~ Representation size € {(o0, 8], (8, 4] and (4,1]}
1 ~ Layer depth <12
Fully Connected (FC) | n ~ # consecutive FC layers <3
d ~ # neurons € {512,256, 128}
Termination State s ~ Previous State .
t ~ Type Global Avg. Pooling/Softmax
[21] T. Elsken et al., Neural Architecture Search:
output A Survey, Journal of Machine Learning Research, 2019 [25] B. Baker et al., ‘Designing Neural Network Architectures using Reinforcement Learning’, 2017
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NEURAL ARCHITECTURE SEARCH

Understanding the Search Space & Cells instead of whole architectures

re-use cell x ?
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[21] T. Elsken et al., Neural Architecture Search:
A Survey, Journal of Machine Learning Research, 2019

Example illustrations of the cell search space with
two different cells (not whole neural network
architectures) 2> many design choices for the
overall ‘macro architecture’ of the network
Approach: a whole neural network architecture
can be built by stacking the cells sequentially
Complex approach: Cells can also be combined in
a more complex approach: e.g., in multi-branch
spaces by simply replacing layers

23" August 2019

Simplicity: Search space is drastically reduced
(less layers = ~ 7 x speed-up vs. full architectures
in some recent work examples)

Reusability: Architectures built from cells can more
easily be transferred or adapted to other datasets

Repitition: Creating architectures by repeating
building blocks has proven a useful design (e.g.
CNN with N x convolution, pooling layers, etc. )
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NEURAL ARCHITECTURE SEARCH

Computational Complexity & Number of Parameters of Known Architectures

Model | Depth  Parameters | Error rate (%) " Further complexity in choosing
Network in Network (Lin et al.] 2013) - - 8.81 HPC system features (e.g.
AlI-CNN (Springenberg et al., 2014) - - 7.25 Network Attached Memory,
Dgeply Supervised Ngt (Lee et al., 2015) - - 7.97 paraIIeI fiIe-systems, etc.)
Highway Network (Srivastava et al., 2015) - - 7.72 . . X
Scalable Bayesian Optimization (Snoek et al.| 2015) - - 6.37 - Computing Impact in various
FractalNet (Larsson et al., 2016) 21 38.6M 5.22 GPU architectures like Kepler,
with Dropout/Drop-path 21 38.6M 4.60 Pascal, Volta
ResNet (He et al.,[2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016c)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al., 2016¢) 110 1.7M 5.23
1202 10.2M 491
Wide ResNet (Zagoruyko & Komodakis, 2016) 16 11.0M 4.81
28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b) 164 1.7M 5.46
1001 10.2M 4.62
DenseNet (I = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNetBC (T — 100 L — 40) Huano et al (2016b) 190 25 AM 3,46
Neural Architecture Search v1 no stride or pooling 15 4.2M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neuﬁal Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

[23] B. Zoph et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018
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NEURAL ARCHITECTURE SEARCH

Understanding the Search Strategy

Search Space
A p—)el Search Strategy

[21] T. Elsken et al., Neural Architecture Search:
A Survey, Journal of Machine Learning Research, 2019

. Search strategy details how to explore the search
space (which is often exponentially large or even
unbounded)

" (a) it is desirable to find well-performing
architectures quickly

" (b) premature convergence to a region of suboptimal
architectures should be avoided

" Search strategy encompasses the classical
exploration-exploitation trade-off: (a) vs (b)
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Architecture A € A

performance estimate of A

Performance
Estimation
Strategy

(different search strategies to explore the space of neural network architectures in addition to random search)

Reinforcement Learning

Generation of an architecture can

be considered as agent’s action

with space identical with neural
architecture search space and rewards are
used to guide the process

e Gradient-Based Methods

=  Optimize network weights & architecture
by alternating gradient descent steps on
training data for weights & validation data
for architectural parameters

Bayesian Optimization

Central idea of Bayesian optimization is to
build a neural network architecture that
can be updated and queried to drive
optimization decisions, also assuming e.g.
distributions (i.e., priors)

e Evolutionary Methods N

=  Evolve a population of neural
architecutres & in every evolution step a
model from the population is sampled
and serves as parent to generate

\ offsprings & mutations /




LEARNING APPROACHES - REVISITED FOR NAS

Reinforcement Learning

Learn to play games

= Each observation of the predictor measurement(s) has
some associated response measurement:

" lnput X=2,,..,T,
[7] Video source: Google DeepMind'’s

Deep Q-learning playing Atari Breakout

= Data (Xx,),...,(x,)

= Goal: Learn through iterations

= Guided by output grade: check learning and compare with grade
= Challenge: Iterations may require lots of CPU time (e.g. backgammon playing rounds)

= Challenge: Usually considered as a complicated learning approach but with applications in gaming

" Reinforcement learning approaches learn through iterations using the grading output as guide
" Reinforcement learning approaches are used in playing game algorithms (e.g backgammon)
" Unupervised learning works with data = [input, some output, grade for this output]
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NEURAL ARCHITECTURE SEARCH

Using Reinforcement Learning Techniques - Understanding Controllers

" Recurrent Neural Networks (RNNs) can handle sequence data
" Idea: CNNs are essentially a sequence of layers
= Controller (RNN) generete hyper-parameters as a sequence

@ @ (output layer)
(‘delay’)

(hidden layer)
(unroll the ‘loop’

over t timesteps)

(input layer)

Filter Stride
width [+ [ Height [+

Number
% [of Filters|:

Filter
Height [\

Stride
Width [\

Number
of Filters|:

Filter
Height [\

Layer N-1 Layer N Layer N+1

N-1 skip connections

Layer N-1 Layer N Layer N+1
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[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017

Sample architecture A
with probability p

[ v

Trains a child network
with architecture
A to get accuracy R

The controller (RNN)

1 J

Compute gradient of p and
scale it by R to update
the controller




NEURAL ARCHITECTURE SEARCH

Using Reinforcement Learning Techniques — Understanding Neural Architecture vs. RNN Structure

(‘delay’)

‘ @ @ (output layer)

(hidden layer)
(unroll the ‘loop’

over t timesteps) °

(input layer)

Add

Add |,

Tree

ZN N

Y

S RS- Y- RS S RS- Y- RS- RS
R Xt N Xt “Treelndex 0°  Treelndex1  Treelndex2 CellInject = Cell Indices Xt Pe-1 Ce1
[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017
23" August 2019
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NEURAL ARCHITECTURE SEARCH

Using Reinforcement Learning Techniques — Understanding Agents

Agent Samples Train Network h Agent Learns ) ] Generation of an architecture can be considered as agent'‘s
Network Topology TopIoaT From Memory action with space identical with neural architecture search
s st space and rewards are used to guide the process
H C
P(2,2) > .i’ >
SM(10) C )
. Performance:
Store in 93.3% Sample Update
Replay Memory Memory Q-Values
J

/ Softmax m \

7 T:"*@.!:ﬂ_‘

(peform distributed training of NAS)

Layer N-1 Layer N

O state

~ Action

Layer 2 -

Convolution
64 Filters

o3 S el

Max Pooling

!l@ Wl Softmax

[25] B. Baker et al., ‘Designing Neural Network Architectures using Reinforcement Learning’, 2017
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NEURAL ARCHITECTURE SEARCH

Using Reinforcement Learning Techniques — Understanding Distributed Training

" Distributed training for Neural Architecture Search can use a set of S parameter servers

" Parameter servers store and send parameters to K controller replicas

" Each controller replica then samples m architectures and run the multiple child models in parallel
= Accuracy of each child model is recorded to compute the gradients with respect to parameters

= In turn sent back to the parameter servers

Parameter
Server S

Parameter
Server 2

Parameter
Server 1

Parameters

C

Controller Controller Controller
Replica 1 Replica 2 LR Replica K
Accuracy
R
Child Child . Child Child Child . Child Child Child . Child
Replica 1 Replica 2 Replica m Replica 1 Replica 2 Replica m Replica 1 Replica 2 Replica m

(each controller replica
then samples m architectures)

[23] B. Zoph et al., ‘Neural Architecture Search with Reinforcement Learning’, 2017
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NEURAL ARCHITECTURE SEARCH

Using Reinforcement Learning Techniques and InstaNAS (multiple Neural Network Architecture Instances)

. Derived specific
architectures that
perform good for
specific dataset

= Often a Recurrent
Neural Network
(RNN) technique
that performs the

agent steps samples
1 _--" =  E.g.whatis the accuracy or
‘| ’,¢*' error rate we obtain as
\ Child Architectures =~ ,| ~ metricto guide the search
1 \ /’ for specific architectures for
Controller - % la,i7 ) o specific dataset samples
’
’
r( @T ,,/
’
i Task—Dependem Objectives [
/ e = E.g. what is the latency
2 ®) of the network for a
= ———— == A given dataset sample to
Architecture-Dependent Objectives f===========+ guide the search for
specific architectures
Reward that offe_r better latency
e by keeping accuracy(!)

[22] A.C. Cheng et al., ‘InstaNAS: Instance-aware Neural Architecture Search’, 2018
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NEURAL ARCHITECTURE SEARCH

Understanding the Performance Estimation Strategy

Search Space

A

(recent research focuses on developing methods that
reduce the cost of these performance estimations)

Search Strategy

Architecture A € A

Performance
Estimation
Strategy

latency?)

performance estimate of A

[21] T. Elsken et al., Neural Architecture Search: A Survey, Journal of Machine Learning Research, 2019

Speed-up method

How are speed-ups achieved?

Lower fidelity
estimates

Training time reduced by
training for fewer epochs, on
subset of data, downscaled
models, downscaled data, ...

Learning Curve
Extrapolation

Training time reduced as
performance can be extrapolated
after just a few epochs of training.

‘Weight Inheritance/
Network Morphisms

Instead of training models from
scratch, they are warm-started by
inheriting weights of, e.g., a
parent model.

One-Shot Models/
‘Weight Sharing

Only the one-shot model needs
to be trained; its weights are
then shared across different
architectures that are just
subgraphs of the one-shot model.

Objective of neural architecture search is typically to find architectures that achieve high predictive performance on unseen data

Performance Estimation refers to the process of estimating this performance and the usefulness of the architecture that has been ‘found/explored’
Simplest option: perform a standard training and validation of the architecture on data > unfortunately computationally expensive (even with HPC!)
Simplest option thus limits the number of neural network architectures that can be explored or apply a number of speed-up methods
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SUMMARY

Neural Architecture Search (NAS) is a vibrant new research field
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SUMMARY

Neural Architecture Search (NAS) is a vibrant new research field

= High Performance Computing & Machine Learning more intertwined today

= GPUs can significantly speed-up the training of machine and deep learning models

= Recent Deep Learning models have tremendous success in many application areas
= Pro: Manual feature engineering processes is often automated using automated feature learning
= Contra: Employed neural network architectures are still often developed manually by human experts
= Lessons learned: Manual time-consuming and error-prone process shifted to architecture engineering
= Automated Neural Architecture Search
= Need since there is a growing number of fine-tuned architectures with a high number of hyper-parameters
= Approaches differ in (a) search space, (b) search strategy, and (c) performance estimation strategy
= Reinforcement Learning for NAS is just one of the possible search strategies, but a promising technique

= Qverlaps with meta-learning and hyper-parameter optimization approaches and subfield of AutoML
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