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Outline
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• 1995: ParaStation research project (→ University of Karlsruhe)
• 1999: ParTec was founded as a spin-off
• 2005: Open source (→ ParaStation Consortium)
• since 2004: Cooperation with JSC

– various precursor clusters
– DEEP-System (MSA Prototype)
– JURECA (Cluster/Booster)
– JUWELS (Cluster/Booster)
– JURECA DC

• since 2010: DEEP Projects
– Cluster/Booster → Modularity

• since 2017: ParaStation Modulo

ParaStation History
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• ParaStation ClusterTools
− Tools for provisioning and management

• ParaStation HealthChecker & TicketSuite
− Automated error detection & error handling
− Ensuring integrity of the computing environment
− Keeping track of issues
− Powerful analysis tools

• ParaStation MPI & Process Management
− Runtime environment specifically tuned to the largest distributed memory 

supercomputers

ParaStation Modulo
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• Scalable network of MPI process management
daemons running on the computational nodes:

– Process startup and control, I/O forwarding, …
– Precise resource monitoring
– Proper cleanup after jobs

• PSSLURM and PSMOM:
– Plugins to the ParaStation Management daemons
– For tight integration with Slurm & Torque
– Reduce number of daemons

ParaStation Process Manager
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• Based on MPICH 3.3.2 (merge with 3.4.1 coming soon) 
– Maintains MPICH ABI compatibility
– Supports all MPICH tools (tracing, debugging, …)

• MPI libraries for several compilers (especially for GCC and Intel)
• Supports a wide range of interconnect technologies, even in parallel:

– InfiniBand on JURECA Cluster and JUWELS
– Omni-Path on JURECA Booster
– Extoll on DEEP projects research systems
– BXI planned to be integrated in RED-SEA

ParaStation MPI Library
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• Proven to scale up to 3,500 nodes
and 140,000 procs per job

• HPL runs with ParaStation MPI:
– JURECA & Booster: No. 29 (Top500 Nov 2017)
– JUWELS: No. 23 (Top500 Jun 2018)
– JUWELS Booster: No. 7 (Top500 Nov 2020)

ParaStation MPI Library
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• Upper (HW-independent)
layers are derived from MPICH

• MPICH layers beneath ADI3 are
replaced by:

– ParaStation PSP Device, plus
– pscom low-level communication library

• Support for various transports and protocols
via pscom plugins

– Applications may use multiple transports / plugins
at the same time

– Gateway capability via PSGW plugin to bridge
transparently between different networks

Software Architecture
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• Two processes communicate through a gateway if they are not directly 
connected by a high-speed network (e.g., IB, OPA, Extoll…)

• High-speed connections between processes and gateway daemons
• Static routing to choose a common gateway
• Virtual connection between

both processes through the
gateway, transparent for the
application

• Virtual connections are
multiplexed through
gateway connections

Network Bridging
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• Example for a job on 2 modules of the DEEP-EST prototype:
– Use of srun with colon notation

srun … : …
– Modules: Cluster (CN) + Extreme Scale Booster (ESB)

--partition dp-cn … : … --partition dp-esb
– 8 Nodes / 64 Procs on Cluster and 16 Nodes / 256 Procs on Booster

-N8 –n64 … : … -N16 –n256
– Use of 1 gateway node in between

srun --gw_num=1 …

• srun --gw_num=1 --partition dp-cn -N8 –n64 ./hello_mpi_world : 
--partition dp-esb –N16 –n256 ./hello_mpi_world

Modular MPI Jobs
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• An MPI job started with colon notation via srun will run in a single
MPI_COMM_WORLD.

• Workflows may demand for multiple MPI_COMM_WOLRDs that may
connect (and later disconnect) with each other during runtime.

• Simple job script example for such a case:

Workflows
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#!/bin/bash
#SBATCH --gw_num=1
#SBATCH --nodes=8 --partition=dp-cn
#SBATCH hetjob
#SBATCH --nodes=16 --partition=dp-esb

srun –n64  --het-group 0 ./mpi_hello_accept &
srun –n256 --het-group 1 ./mpi_hello_connect &

wait

Starts two separate
MPI_COMM_WORLDs



• According to the MPI standard, the following functions can be used to 
establish connections between two separate MPI_COMM_WORLDs:

– MPI_Open_port()
– MPI_Comm_accept()
– MPI_Comm_connect()
– MPI_Comm_disconnect()

• ParaStation MPI supports all these functions – even for connections 
across module boundaries.

• …MPI_Comm_spawn() is supported, but currently not quite well for the 
inter-module case.

Establishing Communication
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 Is there a demand for this
on application side?

MPI_COMM_WORLD MPI_COMM_WORLD
Inter-

Communicator



• Modularity-aware MPI Collectives:
– Optimized patterns for collectives that take the modularity into account
– Assumption: Inter-module communication is the bottleneck
– Example:

MSA Awareness

13C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

CN CN

CN CN

Module 1

BN BN

BN BN

Module 2

DN DN

Module 3

Bad: (binary tree)

CN CN

CN CN

Module 1

BN BN

BN BN

Module 2

Good: (hierarchical)

DN DN

Module 3
MPI_Bcast()



• General rules used here to optimize collectives:
1. First do all module-internal gathering and/or reduction operations — if required.
2. Then perform the inter-module operation with only one process per module.
3. Finally, distribute the data within each module in a strictly module-local manner.

• Multi-level hierarchy awareness:
Apply this set of rules recursively: First on module level, then on node level…

• Usage: Set environment variables…
− PSP_MSA_AWARENESS=1
− PSP_MSA_AWARE_COLLOPS=1
− PSP_SMP_AWARE_COLLOPS=1

Hierarchical Collectives
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As these features are not always beneficial and/or
are still experimental, they are disabled by default! 



• Improvement heavily depends on the setting, for example:
– number of processes / gateway nodes involved
– rank distribution in communicator
– message sizes of the pattern
– …and the pattern itself

• Currently supported patterns:
– MPI_Bcast / MPI_Ibcast
– MPI_Reduce / MPI_Ireduce
– MPI_Allreduce / MPI_Iallreduce
– MPI_Scan / MPI_Iscan
– MPI_Barrier

Performance Improvement
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IMB MPI Benchmarks: Allreduce with 8 (CN) + 8 (DAM-EXT) nodes,
8 procs per node, and 1 Gateway (GW) node on DEEP-EST prototype



• Besides this kind of transparent MSA awareness, there is also the 
possibility for the application to adapt to modularity explicitly.

• API additions by ParaStation MPI for retrieving topology information:
– Querying the module ID via the MPI_INFO_ENV object:

– Splitting communicators according to the topology by utilizing
a newly added split type for MPI_Comm_split_type():

API Extensions
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MPI_Info_get (MPI_INFO_ENV , "msa_module_id", …, value, …);

MPI_Comm_split_type (oldcomm, MPIX_COMM_TYPE_MODULE, …, 
&newcomm);



• In the first instance, CUDA awareness just means that an application is 
allowed to pass GPU-Device pointers to the MPI.

• Otherwise, if the memory is not managed by the CUDA runtime, an 
explicit staging is required by the application.

CUDA awareness
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MPI_Send(buffer_in_device_memory, …);

cudaMemcpy(temp_buffer_on host,                 // <- Staging
buffer_in_device_memory, cudaDeviceToHost);

MPI_Send(temp_buffer_on_host, …);

Today, with CUDA awareness:

Back then, without CUDA awareness:



• CUDA awareness supported by the following MPI APIs:
– Point-to-point (e.g., MPI_Send, MPI_Recv, …)
– Collectives (e.g., MPI_Allgather, MPI_Reduce, …)
– One-sided (e.g., MPI_Put, MPI_Get, …)
– Atomics (e.g., MPI_Fetch_and_op, MPI_Accumulate, ...)

• CUDA awareness for all transports / pscom plugins via staging
• CUDA optimization / GPUDirect: UCX plugin (pscom4ucp)

CUDA and ParaStation MPI
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• Ability to query CUDA awareness at compile time:

• …and also at runtime via API extensions:

CUDA and ParaStation MPI
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#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf("The MPI library is CUDA-aware\n");
#endif

if (MPIX_Query_cuda_support())
printf("The CUDA awareness is activated\n");

MPI_Info_get(MPI_INFO_ENV, "cuda_aware", … , value, …);

• As CUDA awareness adds some cycles to latency, it is disabled by default!
Set PSP_CUDA=1 to enable it.

Similar to Open MPI‘s
CUDA extensions



• Extension stemming from DEEP-EST: persistent MPI RMA windows
• Primarily developed for addressing so-called Network Attached Memory

…but persistent RMA windows can also be built with
shared-memory on common compute nodes as well!

• The idea of Network Attached Memory (NAM):
– Network nodes without (significant) compute power, but equipped with a lot 

of fast and byte-addressable memory
– Plus an interconnect technology that allows direct RDMA Put/Get operations 

onto this memory from remote compute nodes
• How to integrate this into the world of MPI and its RMA interface?

Persistent MPI Windows
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• Idea followed in DEEP-EST:
– Use MPI_Win_allocate() with special MPI Info key/value pairs to allocate
– One NAM region is then associated with each MPI rank in the window
– Use common MPI_Put/Get() operations for accessing these regions
– Persistency: freeing the MPI window does not release the associated memory 

Persistent MPI Windows
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• Scenario for application workflows:
– Prior MPI session has called MPI_Win_allocate() for NAM with n ranks
– A new MPI session with m ranks now wants to attach to that window
– New session calls MPI_Comm_connect(), returning an inter-comm and uses 

this inter-comm for creating an RMA window object by attaching
– Window now has as many NAM regions as ranks n in former session, and 

NAM regions are addressable by remote ranks in the inter-comm
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Persistent MPI Windows
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• Which of these features are of interest for DEEP-SEA Applications?
– Support for modular MPI jobs? (i.e., jobs across multiple MSA modules)
– Transparent features to optimize communication on MSA systems?
– API extensions to adapt applications explicitly to modularity?
– Support for workflows (i.e., jobs with multiple MPI_COMM_WORLDs) via

 MPI_Comm_connect/accept()?
 MPI_Comm_spawn()?
 Persistent RMA windows?

– Awareness/interoperability for CUDA and/or other programming models?

• Any further demands, ideas, or special wishes towards MPI support?

Summary and Outlook
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 ParaStation MPI description on the DEEP Projects webpage:
 https://www.deep-projects.eu/software/programming-

environment/parastation-mpi.html

 Documents on the BSCW: DEEP-SEA  Seminar  ParaStation MPI
 https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3597441

 ParaStation MPI as open-source on GitHub:
 https://github.com/ParaStation/psmpi

 For further questions and/or discussions just contact me directly:
 clauss@par-tec.com

Resources and Contact

24C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

https://www.deep-projects.eu/software/programming-environment/parastation-mpi.html
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Software for Exascale Architectures

DEEP-SEA
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