
Carsten Clauss, ParTec AG

ParaStation MPI

The Research leading to these results has received funding from the European Commission's FP7, H2020, and EuroHPC Programmes,
under Grant Agreements n° 287530, 610476, 754304, and 955606

• ParaStation overview
• Modular MPI Jobs

– Network Bridging
– Workflows
– MSA awareness

• CUDA awareness
• Persistent MPI Windows

Outline

2C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• 1995: ParaStation research project (→ University of Karlsruhe)
• 1999: ParTec was founded as a spin-off
• 2005: Open source (→ ParaStation Consortium)
• since 2004: Cooperation with JSC

– various precursor clusters
– DEEP-System (MSA Prototype)
– JURECA (Cluster/Booster)
– JUWELS (Cluster/Booster)
– JURECA DC

• since 2010: DEEP Projects
– Cluster/Booster → Modularity

• since 2017: ParaStation Modulo

ParaStation History

3C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

(c) Forschungszentrum
 Jülich G

m
bH

, R
alf-U

w
e Lim

bach

• ParaStation ClusterTools
− Tools for provisioning and management

• ParaStation HealthChecker & TicketSuite
− Automated error detection & error handling
− Ensuring integrity of the computing environment
− Keeping track of issues
− Powerful analysis tools

• ParaStation MPI & Process Management
− Runtime environment specifically tuned to the largest distributed memory

supercomputers

ParaStation Modulo

4C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Scalable network of MPI process management
daemons running on the computational nodes:

– Process startup and control, I/O forwarding, …
– Precise resource monitoring
– Proper cleanup after jobs

• PSSLURM and PSMOM:
– Plugins to the ParaStation Management daemons
– For tight integration with Slurm & Torque
– Reduce number of daemons

ParaStation Process Manager

5C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Based on MPICH 3.3.2 (merge with 3.4.1 coming soon)
– Maintains MPICH ABI compatibility
– Supports all MPICH tools (tracing, debugging, …)

• MPI libraries for several compilers (especially for GCC and Intel)
• Supports a wide range of interconnect technologies, even in parallel:

– InfiniBand on JURECA Cluster and JUWELS
– Omni-Path on JURECA Booster
– Extoll on DEEP projects research systems
– BXI planned to be integrated in RED-SEA

ParaStation MPI Library

6C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Proven to scale up to 3,500 nodes
and 140,000 procs per job

• HPL runs with ParaStation MPI:
– JURECA & Booster: No. 29 (Top500 Nov 2017)
– JUWELS: No. 23 (Top500 Jun 2018)
– JUWELS Booster: No. 7 (Top500 Nov 2020)

ParaStation MPI Library

7C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Upper (HW-independent)
layers are derived from MPICH

• MPICH layers beneath ADI3 are
replaced by:

– ParaStation PSP Device, plus
– pscom low-level communication library

• Support for various transports and protocols
via pscom plugins

– Applications may use multiple transports / plugins
at the same time

– Gateway capability via PSGW plugin to bridge
transparently between different networks

Software Architecture

8C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

MPI Application

MPIR
(hardware-independent)

MPID
(hardware-dependent)

Hardware

pscom Plugin Interface

MPI Interface

ADI3 Interface

M
PI

C
H

Ar
ch

ite
ct

ur
e

PSP Device

pscom

PSM2 UCX PSGW

pscom Interface

Hardware Interfaces

…

• Two processes communicate through a gateway if they are not directly
connected by a high-speed network (e.g., IB, OPA, Extoll…)

• High-speed connections between processes and gateway daemons
• Static routing to choose a common gateway
• Virtual connection between

both processes through the
gateway, transparent for the
application

• Virtual connections are
multiplexed through
gateway connections

Network Bridging

9C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Example for a job on 2 modules of the DEEP-EST prototype:
– Use of srun with colon notation

srun … : …
– Modules: Cluster (CN) + Extreme Scale Booster (ESB)

--partition dp-cn … : … --partition dp-esb
– 8 Nodes / 64 Procs on Cluster and 16 Nodes / 256 Procs on Booster

-N8 –n64 … : … -N16 –n256
– Use of 1 gateway node in between

srun --gw_num=1 …

• srun --gw_num=1 --partition dp-cn -N8 –n64 ./hello_mpi_world :
--partition dp-esb –N16 –n256 ./hello_mpi_world

Modular MPI Jobs

10C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• An MPI job started with colon notation via srun will run in a single
MPI_COMM_WORLD.

• Workflows may demand for multiple MPI_COMM_WOLRDs that may
connect (and later disconnect) with each other during runtime.

• Simple job script example for such a case:

Workflows

11C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

#!/bin/bash
#SBATCH --gw_num=1
#SBATCH --nodes=8 --partition=dp-cn
#SBATCH hetjob
#SBATCH --nodes=16 --partition=dp-esb

srun –n64 --het-group 0 ./mpi_hello_accept &
srun –n256 --het-group 1 ./mpi_hello_connect &

wait

Starts two separate
MPI_COMM_WORLDs

• According to the MPI standard, the following functions can be used to
establish connections between two separate MPI_COMM_WORLDs:

– MPI_Open_port()
– MPI_Comm_accept()
– MPI_Comm_connect()
– MPI_Comm_disconnect()

• ParaStation MPI supports all these functions – even for connections
across module boundaries.

• …MPI_Comm_spawn() is supported, but currently not quite well for the
inter-module case.

Establishing Communication

12C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

 Is there a demand for this
on application side?

MPI_COMM_WORLD MPI_COMM_WORLD
Inter-

Communicator

• Modularity-aware MPI Collectives:
– Optimized patterns for collectives that take the modularity into account
– Assumption: Inter-module communication is the bottleneck
– Example:

MSA Awareness

13C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

CN CN

CN CN

Module 1

BN BN

BN BN

Module 2

DN DN

Module 3

Bad: (binary tree)

CN CN

CN CN

Module 1

BN BN

BN BN

Module 2

Good: (hierarchical)

DN DN

Module 3
MPI_Bcast()

• General rules used here to optimize collectives:
1. First do all module-internal gathering and/or reduction operations — if required.
2. Then perform the inter-module operation with only one process per module.
3. Finally, distribute the data within each module in a strictly module-local manner.

• Multi-level hierarchy awareness:
Apply this set of rules recursively: First on module level, then on node level…

• Usage: Set environment variables…
− PSP_MSA_AWARENESS=1
− PSP_MSA_AWARE_COLLOPS=1
− PSP_SMP_AWARE_COLLOPS=1

Hierarchical Collectives

14C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

As these features are not always beneficial and/or
are still experimental, they are disabled by default!

• Improvement heavily depends on the setting, for example:
– number of processes / gateway nodes involved
– rank distribution in communicator
– message sizes of the pattern
– …and the pattern itself

• Currently supported patterns:
– MPI_Bcast / MPI_Ibcast
– MPI_Reduce / MPI_Ireduce
– MPI_Allreduce / MPI_Iallreduce
– MPI_Scan / MPI_Iscan
– MPI_Barrier

Performance Improvement

15C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

IMB MPI Benchmarks: Allreduce with 8 (CN) + 8 (DAM-EXT) nodes,
8 procs per node, and 1 Gateway (GW) node on DEEP-EST prototype

• Besides this kind of transparent MSA awareness, there is also the
possibility for the application to adapt to modularity explicitly.

• API additions by ParaStation MPI for retrieving topology information:
– Querying the module ID via the MPI_INFO_ENV object:

– Splitting communicators according to the topology by utilizing
a newly added split type for MPI_Comm_split_type():

API Extensions

16C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

MPI_Info_get (MPI_INFO_ENV , "msa_module_id", …, value, …);

MPI_Comm_split_type (oldcomm, MPIX_COMM_TYPE_MODULE, …,
&newcomm);

• In the first instance, CUDA awareness just means that an application is
allowed to pass GPU-Device pointers to the MPI.

• Otherwise, if the memory is not managed by the CUDA runtime, an
explicit staging is required by the application.

CUDA awareness

17C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

MPI_Send(buffer_in_device_memory, …);

cudaMemcpy(temp_buffer_on host, // <- Staging
buffer_in_device_memory, cudaDeviceToHost);

MPI_Send(temp_buffer_on_host, …);

Today, with CUDA awareness:

Back then, without CUDA awareness:

• CUDA awareness supported by the following MPI APIs:
– Point-to-point (e.g., MPI_Send, MPI_Recv, …)
– Collectives (e.g., MPI_Allgather, MPI_Reduce, …)
– One-sided (e.g., MPI_Put, MPI_Get, …)
– Atomics (e.g., MPI_Fetch_and_op, MPI_Accumulate, ...)

• CUDA awareness for all transports / pscom plugins via staging
• CUDA optimization / GPUDirect: UCX plugin (pscom4ucp)

CUDA and ParaStation MPI

18C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Ability to query CUDA awareness at compile time:

• …and also at runtime via API extensions:

CUDA and ParaStation MPI

19C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
printf("The MPI library is CUDA-aware\n");
#endif

if (MPIX_Query_cuda_support())
printf("The CUDA awareness is activated\n");

MPI_Info_get(MPI_INFO_ENV, "cuda_aware", … , value, …);

• As CUDA awareness adds some cycles to latency, it is disabled by default!
Set PSP_CUDA=1 to enable it.

Similar to Open MPI‘s
CUDA extensions

• Extension stemming from DEEP-EST: persistent MPI RMA windows
• Primarily developed for addressing so-called Network Attached Memory

…but persistent RMA windows can also be built with
shared-memory on common compute nodes as well!

• The idea of Network Attached Memory (NAM):
– Network nodes without (significant) compute power, but equipped with a lot

of fast and byte-addressable memory
– Plus an interconnect technology that allows direct RDMA Put/Get operations

onto this memory from remote compute nodes
• How to integrate this into the world of MPI and its RMA interface?

Persistent MPI Windows

20C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

• Idea followed in DEEP-EST:
– Use MPI_Win_allocate() with special MPI Info key/value pairs to allocate
– One NAM region is then associated with each MPI rank in the window
– Use common MPI_Put/Get() operations for accessing these regions
– Persistency: freeing the MPI window does not release the associated memory

Persistent MPI Windows

21C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

0

2

1

Network Attached
Memory (NAM)

M
PI

 W
in

do
w

MPI_Put/Get(…)

MPI_COMM_WORLD

• Scenario for application workflows:
– Prior MPI session has called MPI_Win_allocate() for NAM with n ranks
– A new MPI session with m ranks now wants to attach to that window
– New session calls MPI_Comm_connect(), returning an inter-comm and uses

this inter-comm for creating an RMA window object by attaching
– Window now has as many NAM regions as ranks n in former session, and

NAM regions are addressable by remote ranks in the inter-comm

22C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

Persistent MPI Windows

0

2

1

M
PI

 W
in

do
w

0

2

1

3
Connect

MPI_Put/Get(…)

m=4 n=3

Prior MPI Session
(perhaps already finished)MPI_COMM_WORLD

Network Attached
Memory (NAM)

• Which of these features are of interest for DEEP-SEA Applications?
– Support for modular MPI jobs? (i.e., jobs across multiple MSA modules)
– Transparent features to optimize communication on MSA systems?
– API extensions to adapt applications explicitly to modularity?
– Support for workflows (i.e., jobs with multiple MPI_COMM_WORLDs) via

 MPI_Comm_connect/accept()?
 MPI_Comm_spawn()?
 Persistent RMA windows?

– Awareness/interoperability for CUDA and/or other programming models?

• Any further demands, ideas, or special wishes towards MPI support?

Summary and Outlook

23C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

 ParaStation MPI description on the DEEP Projects webpage:
 https://www.deep-projects.eu/software/programming-

environment/parastation-mpi.html

 Documents on the BSCW: DEEP-SEA Seminar ParaStation MPI
 https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3597441

 ParaStation MPI as open-source on GitHub:
 https://github.com/ParaStation/psmpi

 For further questions and/or discussions just contact me directly:
 clauss@par-tec.com

Resources and Contact

24C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

https://www.deep-projects.eu/software/programming-environment/parastation-mpi.html
https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/3597441
https://github.com/ParaStation/psmpi
mailto:clauss@par-tec.com

Software for Exascale Architectures

DEEP-SEA

25C. Clauss – DEEP-SEA Co-design Seminar: ParaStation MPI – 21.05.2021

	ParaStation MPI
	Outline
	ParaStation History
	ParaStation Modulo
	ParaStation Process Manager
	ParaStation MPI Library
	ParaStation MPI Library
	Software Architecture
	Network Bridging
	Modular MPI Jobs
	Workflows
	Establishing Communication
	MSA Awareness
	Hierarchical Collectives
	Performance Improvement
	API Extensions
	CUDA awareness
	CUDA and ParaStation MPI
	CUDA and ParaStation MPI
	Persistent MPI Windows
	Persistent MPI Windows
	Persistent MPI Windows
	Summary and Outlook
	Resources and Contact
	DEEP-SEA

