
SEA JUBE Benchmarking Workshop

DR. MAX HOLICKI | JÜLICH SUPERCOMPUTING CENTRE

THE PEOPLE BEHIND JSC SEA BENCHMARKING?

•Sebastian Lührs (Developer of JUBE)

•Andreas Smolenko (DEEP-SEA T1.2 Lead, IO-SEA)

•Max Holicki (DEEP-SEA, IO-SEA T1.2 Lead, Red-SEA)

•Jan-Oliver Mirus (DEEP-SEA, IO-SEA)

•Yannik Müller (DEEP-, IO- & RED-SEA)

•Tom Ridley

•Filipe Guimarães

SCHEDULE

08:50 Video Conference Opens
09:00 Introduction
09:15 Introduction to JUBE by Sebastian Lührs
10:15 Workshop Part 1 (installation + Hands on web tutorial)
12:00 Lunch
13:00 SEA Benchmarking + Discussion
14:00 Workshop Part 2 (application integration)
16:00 Wrap-Up
16:30 Video Conference Closes

WHAT IS A BENCHMARK?

Origin from surveying (1884): Bench + Mark

1. Bench: An angle iron (used to support a leveling staff)

2. Mark: A marking identifying a location

Combined these define a point of reference or a point of comparison.

Nowadays benchmarking no longer refers to the process of
establishing a benchmark, but to the comparing to a benchmark.

By Hogyn Lleol - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=57
450583

https://collection.sciencem
useumgroup.org.uk/object
s/co52873/angle-iron-to-
support-levelling-staff-at-
bench-mar-bracket-
structural-element-bench-
mark

https://www.zenithsurvey.co.uk/uploaded/thumbnails/db_file_img_4188_1024x1024.jpg

WHAT IS A BENCHMARK IN THE COMPUTER SCIENCES?

Benchmarking in the Computer Sciences is the act of comparing the
execution of a program based on metrics, like runtime.

Often this is done to ensure that there are no regressions in
performance, which makes it akin to regression testing, but not 100%
the same.

WHAT DO WE WANT TO ACHIEVE IN IO-SEA?

WHAT DOES THIS MEAN FOR BENCHMARKING IN IO-SEA?

IO-Time

Network
Latency

WHAT IS OUR END GOAL?

IO
 T

im
e

[s
]

Date []

This graph is
purely illustrative!

WHY BENCHMARK IN SEA PROJECTS?

1. Accountability: At the end of the day we need to demonstrate to
our sponsors that the money invested into us has led to something
and that this is also an agreed possible outcome. Trust is good,

control is better!

2. Staying-on-Track/Regression-Testing: Consistent benchmarking
will allow us to stay on track and give feedback to developers if
their codes/systems are improving. In a sense we do regression

testing for you.

JUBE TUTORIAL

•Online at: https://apps.fz-juelich.de/jsc/jube/jube2/docu/tutorial.html

•On JSC systems:

1. Load JUBE: module load JUBE/2.4.1

2. Copy Examples: cp $EBROOTJUBE/examples <PATH>

• From TAR file:

1. Decompress archive

2. Navigate to examples folder

• Reservation: workshop_hpc on JUSUF

https://apps.fz-juelich.de/jsc/jube/jube2/docu/tutorial.html

SEA JUBE Benchmarking

DR. MAX HOLICKI | JÜLICH SUPERCOMPUTING CENTRE

THE PLAN I

•Benchmark systems using use cases and synthetic benchmarks.

•Why synthetic benchmarks?

•We need to understand performance change in use cases.

•Are they due to use-case–code changes?

•Are they due to software changes?

•Are they due to hardware changes?

THE PLAN II

•Weekly or Biweekly Schedule.

•Automated Benchmarking via bots, cron jobs and JUBE.

•Aggregate results on GitLab.

•One repository per software, one branch for each system.

•Archive important benchmark results on local machines.

•We need you to keep a log of system/software changes!

THE CRON JOB

1. Build
2. Benchmark
3. Extract Results

Von GitLab B.V. - gitlab.com/gitlab-org/gitlab-ce/blob/master/app/assets/images/logo wordmark.svg, MIT,
https://commons.wikimedia.org/w/index.php?curid=74127414

1. Checkout Branch
2. Push Results

Von rar-labs - http://www.seeklogo.com/files/W/WinRAR-vector-logo-9A6D30BEBC-seeklogo.com.zip /
farben von Datei:WinRAR-Logo.png, Logo, https://de.wikipedia.org/w/index.php?curid=6203168

1. Compress
Benchmark
Results

JUBE GitLab Tar

(Bi-)Weekly Schedule

THE BENCHMARKS

•Each Benchmark will consist of at least two steps:

•Step 1: Build (compile, download files & executable, etc.).
We always want to be using the freshest build possible.

•Step 2: Run benchmark.

•Step 3: (Optional) post-process results.

• After benchmark completion result tables are generated.

• 1 master table is appended to.

• 1 separate table named after the day is also generated.

• These tables are then pushed to GitLab.

THE BENCHMARKS

Step 1:
Build

Step 2:
Benchmark

Build 1

Build 2

Task 1

Task 2

Task 3

Step 3:
Post-Process

Task 1

Task 2

Task 3

Create
Results

GITLAB

•One Group per project (DEEP- and IO-SEA groups present).

•One repository per use-case software or synthetic benchmark.

•One branch per system (not an issue for DEEP).

•Access to use-case repositories restricted to benchmarking team
and use-case developers.

•Everyone has access to synthetic benchmarks, master branch
edits restricted to benchmarking team.

BOTS

•Benchmarks will be executed on a schedule by bots.

•Weekly or bi-weekly (TBD)

•Result post processing by the bot is possible.

•Aggregated results will automatically be uploaded to GitLab.

•All pertinent benchmark data is stored locally on the system.

•These data can be archived. They just need to be accessible for
inspection at a later date.

•The data can be deleted at project end.

BOTS & GITLAB

•The Bots will have GitLab accounts.

•This is mostly so that we can distinguish between user-generated
benchmark data, which you are more than welcome to generate, and
those created on a schedule.

•GitLab access will be provided via tokens.

•This avoids the need of sharing passwords.

•Automates process, i.e. no login prompts

•Safer because there is only one token per repository.

SAMPLE BENCHMARK INTEGRATION WORKFLOW

Goal Analysis Goal Definition Benchmark
Testing

Result Definition
JUBE Script
Development

Parameter
Space Definition

Monitoring and
Result Analysis

Conclusion

SAMPLE BENCHMARK EXECUTION WORKFLOW

Load Required
Software

Download
Current Source

Code

Store System
Environment
Configuration

Compilation Execute
Benchmark

Extract Results

Reporting

Error
Management

Collect Results
Archive

Results/Files
Postprocess

Results

Potentially taken over by a CI infrastructure

MAKING EFFECTIVE BENCHMARKS

•KISS (Keep It Simple Stupid)

•Only add as much complexity as necessary

•Benchmarks should be short and to the point

•Time things as precisely as possible

•Output intelligently to log files

•Make benchmark quantities easily findable

•Implement proper error checking at the end

•Have Fun!

LINKTEST EXAMPLE
A basic example JUBE benchmark using linktest

LINKTEST

•Peer-to-peer message-passing timing benchmark

•Supports: MPI, IB verbs, PSM2, UCP, TCP &
NVLink via CUDA calls

•Supports (non-)blocking send and recv calls

•Does not support collective calls aside from
MPI all-to-all

•Testing by default in parallel

•Uses either CPU (default) or GPU RAM

•Can perform bidirectional tests

•Can perform bisection tests

WHAT DOES A SAMPLE JUBE SCRIPT LOOK LIKE?

This is XML!
YAML also
works.

WHAT JUBE SETS LOOK LIKE

HOW SUBSTITUTIONS WORK

WHAT THE COMPILE STEP MIGHT LOOK LIKE

Access Token

WHAT THE OTHER STEPS LOOK LIKE

You can submit batch jobs, just
remember to create a file to
indicate completion/error. JUBE
tests for this to check if it should
continue running the benchmark.

The post-process step in this case
is not required.

HOW RESULTS WORK
https://regex101.com/

https://regex101.com/

HOW RESULTS WORK

Meta Data Benchmark Data

THE JUBE CRON JOB

Insert result-table
post-processing here.

POST-PROCESSING EXAMPLE

ONE LAST TIP

You can use parameters to select other parameters!

Thank You! Questions?!

DR. MAX HOLICKI | JÜLICH SUPERCOMPUTING CENTRE

Live Demonstration

DR. MAX HOLICKI | JÜLICH SUPERCOMPUTING CENTRE

EFFECTIVE JUBE BENCHMARK CREATION

•KISS (Keep It Simple Stupid)

•Use precompiled binaries

•Skip compile step for now (replace it with a copy)

•Only include relevant parameters at the start

•Use Python for parameters

•Use JUBE debug mode for dry runs 1st

•To set up the regex patterns use update (saves rerunning)

•Use a regex pattern builder

•Do not forget the ready/error files

•Have a look at the JUBE glossary
https://apps.fz-juelich.de/jsc/jube/jube2/docu/glossar.html

Have Fun!

