
Core- and node-level
malleability using
OmpSs-2@Cluster

Paul Carpenter
Jimmy Aguilar Mena, Omar Shaaban, Isabel Piedrahita, Juliette
Fournis, Vicenç Beltran

17 March 2023 DEEP-SEA seminar

Outline

2

• OmpSs and OmpSs-2
• Pure OmpSs-2@Cluster
• MPI + OmpSs: Dynamic load balancing (core-level malleability)
• Node-level malleability
• Conclusion

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

OmpSs and OmpSs-2

StarSs family of parallel
programming models

§ StarSs key concepts
§ Sequential task-based program
§ Tasks with accesses in a single

address/name space
§ Happens to execute in parallel: automatic

runtime computation of dependencies

StarSs

OmpSs COMPSs
PyCOMPSs

@ SMP @ GPU @ FPGA @ Cluster

4Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

OmpSs: a forerunner for OpenMP Tasking

5

+ Task reductions
+ Taskwait depend
+ OMPT implement.
+ Iterators (deps)
+ Commutative
+ Detached tasks
+ Data affinity

3.0 3.1 4.0 4.5 5.0

+ Task priority
+ Taskloop

prototype

+ Task
depend

+ Task
prototype

+ Concurrent
+ DepAll
+ Taskloop &

depend

5.1

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Main difference between
OmpSs and OpenMP: execution model

• Both models have tasks with annotations
• Generally small changes for OpenMP => OmpSs
• BSC can help

• Thread pool model, not fork–join
• Kernel threads created on start-up
• All threads get work from a task pool

• One thread executes main on an SMP core
• Tasks generate subtasks
• Work is labeled with possible “targets”
• Single or multiple work-queues

• One representative (OpenCL/CUDA/FPGA)
per device/accelerator

6

cuda,smp

fpga, smp
cuda

smp

opencl

Threads
Task pool

Dependence
graph

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Data accesses: single mechanism
to describe concurrency and data

• Concurrency: Runtime computes task dependencies
• Locality: NUMA, accelerator, node
• Data transfers: host–accelerator, among nodes

7Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Pure OmpSs-2@Cluster

OmpSs-2@Cluster

• Extends OmpSs-2 tasking model to multiple nodes
• Tasks may be transparently offloaded to other nodes (MPI processes)
• Task dependencies and data transfers are managed by the runtime system
• Scheduling is based on locality and load balancing
• Communication is done via MPI

• Objectives
1. Alternative to MPI for small scale (up to about 8 or 16 nodes)
2. Improved load balancing for MPI + OmpSs-2 programs
3. Node-level malleability

9

[*] Jimmy Aguilar Mena, Omar Shaaban, Vicenç Beltran, Paul Carpenter, Eduard Ayguade, and Jesus Labarta. OmpSs-2@Cluster:
Distributed memory execution of nested OpenMP-style tasks. European Conference on Parallel Processing, Euro-Par 2022

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

OmpSs-2@Cluster architecture
• Program is compiled exactly the same as OmpSs-2 on SMP (compatible run time API)
• Executed using mpirun/mpiexec/srun as normal for an MPI program
• Each process has instance of Nanos6@Cluster runtime
• main is executed as a task on the first node (otherwise symmetrical across nodes)

Node 0

…

Node 1 Node N-1

Nanos6@Cluster Nanos6@Cluster Nanos6@Cluster

Application (main) Application Application

MPIMPIMPI

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 10

OmpSs-2@Cluster example:
Optimization for one task per node

• One task is offloaded per node
• The offloaded task is a taskfor, which occupies all cores

1 const size_t numNodes = nanos6_get_num_cluster_nodes();
2 const size_t elemsPerNode = N / numNodes;
3 for (size_t i = 0; i < N; i += elemsPerNode) {
4 int nodeid = i / elemsPerNode;
5 #pragma oss taskfor depend(inout: a[i;elemsPerNode]) node(nodeid)
6 for (size_t j = i; j < i+elemsPerNode; j ++) {
7 a[j]++;
8 }
9 }

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 11

OmpSs-2@Cluster example:
Distributed taskloop

• Taskloop is part of OpenMP 4.0
• Proposed by BSC based on earlier work on OmpSs-2
• Similar to taskfor, but accesses can be function of induction variable

• Taskloop loop iterations are automatically distributed by runtime
• In SMP mode: across cores
• In OmpSs-2@Cluster mode: across nodes and cores

• In this form, the runtime has flexibility to optimize
• Load balance
• Dynamic concurrency throttling
• Malleability

1 #pragma oss taskloop depend(inout: a[i])
2 for (size_t i = 0; i < N; i ++) {
3 a[i]++;
4 }

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 1212

Address space and data management: programmer’s view
• Data allocated on any node can be used by task on any node
• Allocation of data provides information to the runtime on the kind of data

13Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

main (current task)

Stack

Local malloc
(nanos6_lmalloc)

Ordinary malloc
(unless intercepted)

Non-offloaded
descendent tasks

Distributed malloc
(nanos6_dmalloc)

Offloaded
descendent tasks

Address space and data management: implementation
• Runtimes coordinate to locate and mmap a common region of virtual memory

• Modern CPUs have 48 bits of virtual memory, which is more than sufficient

• Local memory is allocated/freed by the current node without synchronization
• Distributed memory is allocated/freed centrally (by first node)

14

Local memory 0
Local memory 1

…
Local memory N-1

Distributed memory

Node 0

Vi
rt

ua
l a

dd
re

ss

Local memory 0
Local memory 1

…
Local memory N-1

Distributed memory

Node 1
Local memory 0
Local memory 1

…
Local memory N-1

Distributed memory

Node N-1

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Results (strong scaling)
matmul:

Matrix–matrix
multiplication

32k matrix

matvec:
Matrix–vector
multiplication

64k matrix

jacobi:
Iterative Jacobi

solver
64k matrix

choleksy:
Cholesky

factorization
64k matrix

• Competitive with MPI for matmul
• Scales to about 8 nodes for matvec and jacobi
• Better than MPI+OpenMP (without TAMPI) for cholesky, due to irregular dataflow execution

MPI+OpenMP

MPI+OpenMP

MPI+OpenMP

MPI+OpenMP

15

OmpSs-2@Cluster load balancing

Dynamic load balancing: motivation

• Load imbalance is a problem as old as parallel programming
• Most solutions are done in the application

• e.g. BT-MZ, discrete event simulation, Monte–Carlo

• Mesh partitioning
• e.g. METIS
• Need an accurate cost model
• Static approaches cannot handle dynamic load imbalance
• Dynamic approaches: not trivial when to repartition

• Second level of parallelism
• e.g. BSC’s DLB library
• Compute resources can be redistributed among the processes
• But current approaches are restricted to processes on the node

Jimmy Aguilar Mena, Omar Shaaban, Victor Lopez, Marta Garcia, Paul Carpenter, Eduard Ayguade, and
Jesus Labarta. Transparent load balancing of MPI programs using OmpSs-2@Cluster and DLB. ICPP2022.

17Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 17

T

Dynamic load balancing
with OpenMP/OmpSs and DLB

M
ai
n

Ta
sk

T T
T

T

T
T T

T
T

M
ai
n

Ta
sk TT

T T
T T

T T TT

T

M
ai
n

Ta
sk

T T
T

T

T
T T

T
T

M
ai
n

Ta
sk TT

T T
T T

T T T
TT

T
T

Without DLB With DLB

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 18

Marta Garcia, Julita Corbalan, and Jesus Labarta. LeWI: A Runtime Balancing
Algorithm for Nested Parallelism. International Conference on Parallel
Processing, 2009. ICPP '09.

T

OmpSs-2@Cluster addresses
load imbalance on different nodes

M
ai
n

Ta
sk

T T
T

T

T
T T

T
T

M
ai
n

Ta
sk TT

T T
T T

T T TT

T

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 19

Node YNode X

Cores assigned
using DLB

Addresses:
• Greater level of load imbalance
• One or few application ranks per node
• Correlation in load imbalance of MPI

ranks on a node

OmpSs-2@Cluster + MPI:
Implementation approach (1/2)

• Small number of helper processes are launched on each node
• Sparse expander graph: few helpers but high connectivity to spread the work
• If load is balanced, helpers remain inactive

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 20

MPI + OmpSs-2@Cluster:
Implementation approach (2/2)

• But if load imbalance, helpers will execute offloaded tasks
• Helpers are full Nanos6 runtime instances
• Separate processes: isolated address space from other appranks on same node
• DLB assigns cores among the processes on each node

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 21

Illustration of load balancing using BSC’s Alya MicroPP

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 2222

Time Time

Results (weak scaling)
Unbalanced application
MicroPP
=> Reduction in time to solution by
49% (4 nodes) and 47% (32 nodes)

System with one slow node
N-body on Nord 3 (1.8 GHz vs 3.0 GHz)
Orthogonal Recursive Bisection
balances load assuming constant node
performance
=> 36% reduction in time to solution
compared with baseline (using
Orthogonal Recursive Bisection)

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 23

OmpSs-2@Cluster node-level malleability

Motivation

• Malleability: improve system throughput and support varying resource requirements
• Difficult to modify MPI programs to support malleability (data redistribution)

• Libraries like DMRlib can help… (Antonio Peña + Sergio Iserte)

• OmpSs-2@Cluster simplifies malleability for the application
• Few (or no) changes to program (if already using tasks)
• Data redistribution transparently handled by runtime system

Jimmy Aguilar Mena. Methodology for malleable applications on distributed memory
systems. PhD thesis. 23 November 2022.

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 25

Programmer’s interface for malleability

• Who makes the decision?
• Runtime controlled: Runtime measures resource utilization, negotiates with job scheduler,

decides when to initiate or accept malleability operations, and decides how many nodes to
add/remove

• User controlled: Application decides when to initiate or accept malleability operation and how
many nodes to add/remove; runtime (only) implements user’s decision

• When is the decision applied?
• Synchronous: At defined points in the sequential code
• Asynchronous: At any instant during the execution of the dependency graph, which may not

correspond to a point in the sequential code

• We currently have a User controlled Synchronous model
• But will investigate the other approaches

26Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Programmer’s interface for malleability:
Synchronous with taskwait

• Taskwait stops task execution before malleability operation
• User controlled variant has API function

• Taskwait throttles execution, otherwise may create all tasks, then it would be too late
• Blocks to allocate resources from Slurm (timeout argument)

27

while (…) {

#pragma oss taskloop inout(a[j])
for(j=0; j<N; j++) {

a[j]++;
}

#pragma oss taskwait
int delta = ... // determine change
nanos6_cluster_resize(delta);

}

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Using the current implementation

• Interaction with Slurm
• If Slurm API is available and permit_job_expansion is true

• Minimum number of processes: from mpirun, mpiexec or srun command
• Maximum number of processes: nanos6.toml configuration file
• Number of processes per node: taken from SLURM_* environment variables

28Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Data redistribution policy: Lazy

• Current lazy approach
• On spawn: update affinity, but don’t redistribute
• On shrink: update affinity, move from removed nodes to node with affinity
• Example: nanos6_dmalloc(…) with equipartition (blocked) distribution

29

Node 1Node 0 Node 2

Array: data affinity

Add node 3

Node 1Node 0 Node 2 Node 3

Node 1Node 0 Node 2

Array: data location

Node 1Node 0 Node 2 Node 3

Redistributed on-demand
Node 1Node 0 Node 2

Start with 3 nodes

Computation

Remove node 3

Node 1Node 0 Node 2 Node 3

Node 1Node 0 Node 2 Node 1Node 0 Node 2

Shrink: redistribute from removed nodes

Redistributed on-demand

Node 1Node 0 Node 2

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Process spawning with MPI_Comm_spawn (temporary
until MPI Session interface available)

• Each spawn operation adds a layer
• Previous intra-communicator spawns new nodes

• Last-in First-out
• Release operation must match most recent spawn => undo layers one by one

• Matching granularities
• Release operation must release all ranks that were spawned together
• Implicit barrier in MPI_Finalize: does not return until all processes call MPI_Comm_disconnect
• Cannot break children’s MPI_COMM_WORLD

30Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023

Results: Matvec timelines (64k)
when shrinking

Note: Matvec: Most data
(the matrix) is read only

Checkpoint restart

31Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 31

Dynamic processes

Conclusion

Conclusions

• OmpSs-2@Cluster is the distributed memory variant of OmpSs-2
• Objectives

1. Alternative to MPI for small-scale (up to 8 or 16 nodes for ~ms task granularity)
2. Dynamic load balancing of MPI+OmpSs-2 programs through task offload
3. Node-level malleability transparent to application

• We are looking for feedback and application use cases
• OpenMP tasks are sufficient – we can take it from there
• Please contact Paul Carpenter paul.carpenter@bsc.es

Runtime approaches to malleability, DEEP-SEA seminar 17 March 2023 3333

mailto:paul.carpenter@bsc.es

