Managing

///DEEF Heterogeneous Memory

Projects Infrastructures
ecoOHMEM meets SHAMBLES

Jointly presented by:

Hatem El-Shazly Marios Asiminakis

®

Barcelona

)‘ "-f;,vl—‘ §
Supercomputing N
Center : *\’FDRTH |CS
Centro Nacional de Supercomputacion % ¢ Computer Architecture & VLS| Systems

Nov. 25, 2022

Outline

Overview & Motivation
Objective: Memory Optimization Cycle
Integration Components:

o ecoHMEM (BSC Contribution)

o SHAMBLES (FORTH Contribution)
Towards an integrated solution
Current status

Conclusions

Overview & Motivation

Applications produce increasing amounts of data

HPC execution platforms with heterogeneous memory resources
o First-class citizens
o Move from hierarchical to explicitly managed

Scratchpad Memory

Coto Main Memory

s Less Reliable Memory

Core Y
Main Memory NVRAM
NVRAM Accelerator Memory
Disk Compute-capable

Memory

Overview & Motivation (Cont.)

Heterogeneous Memory Systems

o KNL: R.I.P
o Byte-addressable NVRAM / Persistent
m Intel® Optane™ (PMEM) L)

Wvda

o CPUs + HBM (e.g., Sapphire Rapids)
o CXL Memory Pools

o Also GPUs

Goals:
o Maximize Performance

o Minimize energy
O

SWWIaQ Wvidd
aueydo

sass

Overview & Motivation (Cont.)

Intel Optane Persistent Memory (DIMMs)

Memory Mode
o DRAM as cache for Optane DIMMs Processor
o No Applications modification

App Direct Mode
o DRAM and Optane DIMMs are addressable Procassor
o Software managed

Application’s data distribution?
o 0S? Heuristics? On-the-fly monitoring? Hardware-assisted? Historic data?
User hints?
o Need ecosystem to assist users/developers: Profilers, libraries, runtime
systems

Overview & Motivation (Cont.)

ecoHMEM (BSC contribution): User-level data
placement
o User-level profiles + Placement algorithms +
allocator to honour data distributions

SHAMBLES (FORTH contribution): Kernel-level data
migration
o Use page faults + custom allocation library to
migrate pages

/ ECOHMEM

{ User-level
\ Initial Data
\ Placement

SHAMBLES

Kernel-level
Page
Migration

Objective: Memory Optimization Cycle

Profiling Optimisation Runtime 0s

Datla-

] 4 N\ oriented Statlca"y Het. Memory
Profile imi : ;

Application > Extrae > HMem Advisor ggtt;mlsed FlexMalloc (egloﬁ:’g%ﬁ::ﬁi’ Blacermem MigDraatt?on
J L) g Placement Translated { MM ’and allocator)) Optimised
A A
) —— Online migration across memory
tiers based on sample feed
SHAMBLES

Optimised
Execution
—>

[diagram created by Simon Pickartz (WP3) |

Integration Components
(1-2)

The ecoHMEM Framework

@

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

ecoHMEM

Compiler
Toolchain 2

Source
Code

Extrae
: Executable .| Memory
‘ Object | Profiler [z
S Paramedir
- 4

; . J
Profile
Data
Runtime |. 7 Object . 6 Profile | .
FlexMalloc | yiocator [—‘ Analyzer | IMEM Advisor

. ’4‘

i

ecoHMEM: Improving Object Placement
Methodology for Hybrid Memory Systems in HPC

Marc Jorda, Siddharth Rai, Eduard Ayguadé, Jesis Labarta and Antonio J. Pefia

ecoHMEM (Cont.)

Offline Profiling (Extrae & Paramedir)
o Collects allocations address, size, and allocation point callstack (our object ID)
o Sampling of precise profiling events (PEBS) for LLC load and L1 store misses,
including accessed address

Compiler -
Toolchain 2 i

Source //
Code /’
/
/
Runtime 7
FlexMalloc | 5 ocator i

Extrae
Memory |

Profiler |

Paramedir

Profile
Data
: Profile | : ‘
—i aavmer | HMem Advisor
nalyzer

Executable
Object

Object
Distribution

ecoHMEM (Cont.)

e Offline Profiling (Extrae & Paramedir)

e Analysis (HMem Advisor)
o Computes per-object cost using heuristics based on profiling data to assign each object to a
memory tier
o Greedy relaxation of the 0/1 multiple knapsack problem + optional fine-tuning heuristics

Extrae
Compiler Executable Memory |
Toolchain Object Profiler
Paramedlr
Profile
Data
Runtime Object Profile
FlexMalloc | 5 ocator —i T ' HMem Advisor |

U%

ecoHMEM (Cont.)

e Offline Profiling (Extrae & Paramedir)
e Analysis (HMem Advisor)

e Production execution with optimized automatic data placement (user-level interposition)
o Original binary with FlexMalloc library, which interposes memory allocation functions to
redirect each allocation to the corresponding memory tier

Compiler . Executable
Toolchain 2 Object
/

Extrae
Memory

Profiler -
Paramedir

Profile

Data

| Runtime | 7 Object 6 ‘ Profile .
FlexMalloc Allocator Distribution Analyzer HMem Advisor

ecoHMEM (Cont.)

Offline Profiling (Extrae & Paramedir)
Analysis (HMem Advisor)

Production execution with optimized automatic data placement (user-level interposition)

Fully automatic! ‘ Compiler ’ Executable
No need for Toolchain Object :
& = 5 | Para medir
application mods /,,

Source / Profile
Code Data
Runtime Object Profile

FIexMaIIoc | Attocator l —{ anaiyzer | HMem Advisor

Extrae
Memory

Profiler r

10

Results

e More detailed analysis in the ecoHMEM paper

e ecoHMEM + Optane App direct vs Optane Memory
Mode (baseline)

e With 12GB, in all PMem-6 and most Pmem-2 cases,
our framework performs better than MM and KPM

o Reasons: MM cache misses, memory bound

o MiniFE: ~2X speedup

o HPCG: ~1.6x speedup

o CloverLeaf3D: 10% slowdown with 4GB,
gradual improvement with increasing DRAM
sizes

o LULESH: 7% improvement

o MiniMD: 8% improvement

e Performance in pair (+/- 5%) with ProfDP -
ecohmem provides much easier and productive
execution workflow

z/s [higher is better] Mflops [higher is better]

FoM [higher is better]

6000

1500

=
o
o
(=]

500

16000
14000
12000
10000
8000
6000
4000
2000
0

t

Ld Ld+St
PMem-6

MiniFE

iR

LULESH

MiniMD

Ld L

PMem-2

d+St

e
o
N
i=3

Z CloverLeaf3D

=
o
o

800
600
400

0

Seconds [lower is better]

35

E; . HPCG
(5}
2 25
@
.g 2
S5
=
§. 1
23 0.5
0
Ld Ld+St Ld Ld+St
PMem-6 PMem-2
— Memor
= 4GB Mok
m 8GB Page
12GB migration

= ProfDP

11

Integration Components
(2-2)

SHAMBLES

| FORTH-ICS

;: . Computer Architecture & VLS| Systems

SHAMBLES overview

e Kernel space part
o Custom mmap() flag

. . . | Online transparent "
o Timer invalidates part of the e .m,';ra.io,.m.,.‘ll‘._,u“&l_ =
(unmo.d};id executabli) memory access tracking/analysis ‘
page table
o Page fault handling —— pemory e Migation decisions
o Debugfs interface serspace ity 4
e Userspacepart === memeeeme e e e m e e e e mm e mm—
kernel-space S e Daie]
o Custom allocator, based on [Limux kernel| s it i s i e

jemalloc
o Allocator plugin, implementing
policies

® No need for dedicated hardware
12

SHAMBLES Execution Flow

13

SHAMBLES-Based Profiling

When we use the profiling plugin, we can
then use the output to generate heatmaps
and scatterplots.

This profile can also be used to create files
compatible with the HMEM advisor,
developed at BSC. This is crucial for our
integration effort.

address

0leld

° :' ;.r’ff ..‘.‘Q..:‘ ?‘..'?;

P f ®e_ o :. o ® o
-'%’?t ‘l’:o‘}-{“ﬁ“o""a
o 20 25 30 35

time

14

Migration Policies

Currently, two policies: LRU and Window.
Both policies work on entire allocation (malloc) or parts of an allocation (chunks).
We assume two types of memory, one of which is faster than the other.
o The fast memory is limited and the limit is parameterisable.
o Explicitly managed (rather than typical hierarchical arrangement)
The LRU policy keeps the chunks sorted by the most recent sample.
o The most recently sampled chunks are moved to the fast memory while the least
recently use chunks go to the slow memory.
The Window policy keeps track of a window of the previous samples.
o The chunks with the most samples in the window go to the fast memory.

15

LRU and Window Example

Assuming two memory areas A and B

We access A twice then B once and
SO on

We are constrained to have one of
the two areas each memory type

We are going to compare behavior of
the two policies

A ABAACE

000

A AB A A

16

LRU and Window Example (Cont.)

Current State:

(A-B-E-B-B-®

LRU WINDOW

Hit Hit

LRU list: Samples in window: -
Hits: Warming up Hits: Warming up
Misses: Warming up Misses: Warming up

Migrations: Warming up Migrations: Warming up

17

LRU and Window Example (Cont.)

Current State:

@-(A-E-B-B-®

LRU WINDOW

Hit Hit

LRU list: Samples in window: -
Hits: Warming up Hits: Warming up
Misses: Warming up Misses: Warming up

Migrations: Warming up Migrations: Warming up

18

LRU and Window Example (Cont.)

LRU WINDOW
Current State: - Current State: -
Miss and migration Miss
LRU list: - Samples in window: -
Hits: Warming up Hits: Warming up
Misses: Warming up Misses: Warming up

Migrations: Warming up Migrations: Warming up

19

LRU and Window Example (Cont.)

B-@-E-~-B-®

LRU WINDOW
Current State: - Current State: -
Miss and migration Hit
LRU list: - Samples in window: -
Hits: O Hits: 1
Misses: 1 Misses: O

Migrations: 1 Migrations: O

20

LRU and Window Example (Cont.)

LRU
Current State:
Hit
LRU list:
Hits: 1
Misses: 1

Migrations: 1

@-@-E-B-(A-®

WINDOW

Hit

Samples in window: -
Hits: 2
Misses: O
Migrations: O

21

LRU and Window Example (Cont.)

LRU WINDOW
Current State: - Current State: -
Miss and migration Miss
LRU list: - Samples in window: -
Hits: 1 Hits: 2
Misses: 2 Misses: 1

Migrations: 2 Migrations: O

22

Migration Evaluation Testbed

2 sockets Intel Xeon Gold 5318Y 24

Cores/48 Threads

256GB DDR

1024GB NVM

Latency (nsec) Bandwidth (MB/sec)
REMOTE DDR
(cpuO to mem1) 131.6 53946.5
LOCAL NVM

(cpuO to mem?2) 183.2 26566.4
REMOTE NVM 1832 SeAE

(cpu0 to mem3)

CPUD
Intel Xeon
Gold 5318Y
24C/48T.

CPU1
Intel Xeon
Gold 5318Y
24C/48T.

23

Migration Evaluation MASIM

Random masim: Phase 1

In the masim example, we access
two memory allocations in two
phases.

00000000

chunk,—100ms)

In each phase 99% of the accesses
are in the respective area.

Accesses/msec, higher

Window (1 chunk, 1s)
Window (1 chunk, 10ms)
Window—(1 chunk, ‘1ms)

LRU (100 ms)
Window—(1

Half of the memory is in the NVM N wicy
and half in the DDR.

Random masim: Phase 2

000000

With migrations we can perform
well in both phases.

Accesses/msec, higher is better

ooooo

Window (1 chunk,16ms)

LRU-(100-ms)

Window (20 chunks, 1s)

chunks, 100ms)

Window (20

Window (20 chunks, 100ms)

Window (20 chunks, 10ms)

Window (20 chunks, 10ms)

chunks, 1ms)

Window (20

Window (20 chunks, lms)

24

Migration Evaluation DGEMM

For dgemm, we are using Intel MKL.
1/3 of the data reside in DDR
memory

DGEMM 24 Threads

Specific static allocations work
better

Some migration policies can
approach the optimal static
placement performance

100ms)
10ms)

GFLOPs/sec, higher is better
1ms)

Window!(1 chunk, 108ms)
Window | (1 chunk, 16ms)
Window ! (4 chunks, 1s) !

@
]
X
=3
=
=
[}
-
=
o
°
&
P
=

static a ddr

static b ddr

static c ddr

LRU (18ms)

Window (1 chunk, 1lms)
Window | (4 chunks,
Window!(4 chunks,
Window ! (4 chunks,

The LRU policy tends to have worse Policy
performance than the window based
policy in both examples

25

Towards An Integrated
Solution

Barcelona

Supercomputing FDRTH |CS

Center

Centro Nacional de Supercomputacion Rooy “Computer Architecture & VLS| Systems

Proposed Integration [1/2]

Use a profile generated by
SHAMBLES, as an
alternative to the profile
generated by Extrae.

Need to post-process the
data, and generate .csv and
.json files compatible with
the ecoHMEM Advisor.
Migrations are beyond this
phase of the integration

/ compilation toolchain
Source

Code |

- -

optimized binary
executable

modified placement, > 7\t
enforced via interposition » , o
v

Runtime memory allocator
Flexmalloc, provides heap managers
accessible via the
memkind interface)

- -
~N
-~
vy = ™
-~
-~

-~
Ny

memory object placement,
koompured based on profiling data

Memory usage
profile
Analysis &
Optimization

—

memory object
placement

\

) kernel

Profile data feed from

_/

isted sampler
of memory access

EcoHMEM + SHAMBLES (phase-l): optimization of memory object placement, based on
profile provided by online sampler.

26

Proposed Integration [2/2]

Integrate the SHAMBLES
migration code with
FlexMalloc.

Use the ECOHMEM advisor
for the initial memory
placement.

Afterwards, trigger
migrations based on
SHAMBLES policies.

compilation toolchain
Source [

Code

modified placement, > L€V
enforced via interposition » , ¢
A2

Runtime memory allocator
Flexmalloc, provides heap managers
accessible via the
memkind interface)

-y
el
~\~ -

L Dtk
-~

initial memory object placement,
k:ompu(ed based on profiling data

‘—’

-0~

\

optimized binary
executable

Online migration across memory tiers,

<

-~

memory object
] placement

Memory usage
profile
Analysis &
Optimization

—

based on sample feed
Profile data feed from
— kernel-assisted sampler
of memory access

7

EcoHMEM + SHAMBLES (phase-Il): optimization of memory object placement, based on
profile provided by online sampler, combined with online cross-tier migration.

27

Current status

EcoHMEM
o Enabled correct interposition for Python applications
o On-going: Source-to-Source compiler as alternative to FlexMalloc
o On-going: Adapting profiler to ARM architectures
SHAMBLES
o Heatmaps and scatterplots of profiles of various microbenchmarks
o LRU and Window migration policies implemented
o Performance evaluation of migration with Masim, Stream and DGEMM
Integration
o ecoHMEM running on FORTH infrastructure
o SHAMBLES profiling generates .csv files compatible with ecoHMEM
o On-going: Generation of optional .json files for ecoHMEM

28

Concluding Remarks

Static, profile-based placement transparently and cheaply optimizes applications on
heterogeneous infrastructures

Applications with different memory access patterns during the execution can benefit
from migrations

When using migrations, the selection of policy is critical

Profile-based initial placement and migrations are both needed for best performance

29

Source Code

ecoHMEM
o https://www.bsc.es/ca/research-and-development/software-and-apps/softwar

e-list/ecohmem-software-ecosystem-heterogeneous

SHAMBLES
o https://qgithub.com/CARV-ICS-FORTH/shambles

29

https://www.bsc.es/ca/research-and-development/software-and-apps/software-list/ecohmem-software-ecosystem-heterogeneous
https://www.bsc.es/ca/research-and-development/software-and-apps/software-list/ecohmem-software-ecosystem-heterogeneous
https://github.com/CARV-ICS-FORTH/shambles

Managing Heterogeneous Memory Infrastructures
EcCOHMEM meets SHAMBLES

Thank You
For
Your Attention

Contacts:

Marios Asiminakis: marios4@ics.forth.qr
Hatem El-Shazly: hatem.elshazly@bsc.es

mailto:marios4@ics.forth.gr
mailto:hatem.elshazly@bsc.es

