
Managing
Heterogeneous Memory

Infrastructures
 ecoHMEM meets SHAMBLES

Hatem El-Shazly Marios Asiminakis

Jointly presented by:

Nov. 25, 2022

Outline

● Overview & Motivation

● Objective: Memory Optimization Cycle

● Integration Components:

○ ecoHMEM (BSC Contribution)

○ SHAMBLES (FORTH Contribution)

● Towards an integrated solution

● Current status

● Conclusions

Overview & Motivation

● Applications produce increasing amounts of data

● HPC execution platforms with heterogeneous memory resources

○ First-class citizens

○ Move from hierarchical to explicitly managed

1

Overview & Motivation (Cont.)

● Heterogeneous Memory Systems
○ KNL: R.I.P
○ Byte-addressable NVRAM / Persistent Memory (PMEM)

■ Intel® Optane™ (PMEM)

○ CPUs + HBM (e.g., Sapphire Rapids)
○ CXL Memory Pools

○ Also GPUs

2

● Goals:
○ Maximize Performance
○ Minimize energy
○ …

Overview & Motivation (Cont.)

● Intel Optane Persistent Memory (DIMMs)

● Memory Mode
○ DRAM as cache for Optane DIMMs
○ No Applications modification

● App Direct Mode
○ DRAM and Optane DIMMs are addressable
○ Software managed

3

● Application’s data distribution?
○ OS? Heuristics? On-the-fly monitoring? Hardware-assisted? Historic data?

User hints?
○ Need ecosystem to assist users/developers: Profilers, libraries, runtime

systems

Overview & Motivation (Cont.)

● ecoHMEM (BSC contribution): User-level data

placement

○ User-level profiles + Placement algorithms +

allocator to honour data distributions

● SHAMBLES (FORTH contribution): Kernel-level data

migration

○ Use page faults + custom allocation library to

migrate pages

4

Objective: Memory Optimization Cycle

5

[diagram created by Simon Pickartz (WP3)]

Integration Components
(1-2)

The ecoHMEM Framework

ecoHMEM

6

IEEE Cluster'22

ecoHMEM (Cont.)

7

● Offline Profiling (Extrae & Paramedir)
○ Collects allocations address, size, and allocation point callstack (our object ID)
○ Sampling of precise profiling events (PEBS) for LLC load and L1 store misses,

including accessed address

ecoHMEM (Cont.)

8

● Offline Profiling (Extrae & Paramedir)

● Analysis (HMem Advisor)
○ Computes per-object cost using heuristics based on profiling data to assign each object to a

memory tier
○ Greedy relaxation of the 0/1 multiple knapsack problem + optional fine-tuning heuristics

ecoHMEM (Cont.)

9

● Offline Profiling (Extrae & Paramedir)

● Analysis (HMem Advisor)

● Production execution with optimized automatic data placement (user-level interposition)
○ Original binary with FlexMalloc library, which interposes memory allocation functions to

redirect each allocation to the corresponding memory tier

ecoHMEM (Cont.)

10

● Offline Profiling (Extrae & Paramedir)

● Analysis (HMem Advisor)

● Production execution with optimized automatic data placement (user-level interposition)

Results

11

● More detailed analysis in the ecoHMEM paper

● ecoHMEM + Optane App direct vs Optane Memory
Mode (baseline)

● With 12GB, in all PMem-6 and most Pmem-2 cases,
our framework performs better than MM and KPM

○ Reasons: MM cache misses, memory bound
○ MiniFE: ~2X speedup
○ HPCG: ~1.6x speedup
○ CloverLeaf3D: 10% slowdown with 4GB,

gradual improvement with increasing DRAM
sizes

○ LULESH: 7% improvement
○ MiniMD: 8% improvement

● Performance in pair (+/- 5%) with ProfDP -
ecohmem provides much easier and productive
execution workflow

Integration Components
(2-2)

SHAMBLES

SHAMBLES overview

● Kernel space part

○ Custom mmap() flag

○ Timer invalidates part of the

page table

○ Page fault handling

○ Debugfs interface

● User space part

○ Custom allocator, based on

jemalloc

○ Allocator plugin, implementing

policies

● No need for dedicated hardware
12

SHAMBLES Execution Flow

13

● When we use the profiling plugin, we can
then use the output to generate heatmaps
and scatterplots.

● This profile can also be used to create files
compatible with the HMEM advisor,
developed at BSC. This is crucial for our
integration effort.

SHAMBLES-Based Profiling

14

Migration Policies

15

● Currently, two policies: LRU and Window.
● Both policies work on entire allocation (malloc) or parts of an allocation (chunks).
● We assume two types of memory, one of which is faster than the other.

○ The fast memory is limited and the limit is parameterisable.
○ Explicitly managed (rather than typical hierarchical arrangement)

● The LRU policy keeps the chunks sorted by the most recent sample.
○ The most recently sampled chunks are moved to the fast memory while the least

recently use chunks go to the slow memory.
● The Window policy keeps track of a window of the previous samples.

○ The chunks with the most samples in the window go to the fast memory.

● Assuming two memory areas A and B

● We access A twice then B once and
so on

● We are constrained to have one of
the two areas each memory type

● We are going to compare behavior of
the two policies

A BAA BA

A BAA BA

16

LRU and Window Example

A BAA BA

LRU
Current State:

Hit

LRU list:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

BA

A

17

LRU and Window Example (Cont.)

BA

WINDOW
Current State:

Hit

Samples in window:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

BA

WINDOW
Current State:

Hit

Samples in window:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

A BAA BA

18

LRU and Window Example (Cont.)

LRU
Current State:

Hit

LRU list:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

BA

A ABA

BA

A BAA BA

19

LRU and Window Example (Cont.)

WINDOW
Current State:

Miss

Samples in window:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

LRU
Current State:

Miss and migration

LRU list:

Hits: Warming up

Misses: Warming up

Migrations: Warming up

BA

B A AAB

BA

A BAA BA

20

LRU and Window Example (Cont.)

WINDOW
Current State:

Hit

Samples in window:

Hits: 1

Misses: 0

Migrations: 0

LRU
Current State:

Miss and migration

LRU list:

Hits: 0

Misses: 1

Migrations: 1

BA

A B ABA

AB

A BAA BA

21

LRU and Window Example (Cont.)

WINDOW
Current State:

Hit

Samples in window:

Hits: 2

Misses: 0

Migrations: 0

LRU
Current State:

Hit

LRU list:

Hits: 1

Misses: 1

Migrations: 1

BA

A A BBA

BA

LRU and Window Example (Cont.)

A BAA BA

22

WINDOW
Current State:

Miss

Samples in window:

Hits: 2

Misses: 1

Migrations: 0

LRU
Current State:

Miss and migration

LRU list:

Hits: 1

Misses: 2

Migrations: 2

BA

B A AAB

BA

Migration Evaluation Testbed

● 2 sockets Intel Xeon Gold 5318Y 24
Cores/48 Threads

● 256GB DDR

● 1024GB NVM

23

Migration Evaluation MASIM

● In the masim example, we access
two memory allocations in two
phases.

● In each phase 99% of the accesses
are in the respective area.

● Half of the memory is in the NVM
and half in the DDR.

● With migrations we can perform
well in both phases.

24

Migration Evaluation DGEMM

● For dgemm, we are using Intel MKL.
1/3 of the data reside in DDR
memory

● Specific static allocations work
better

● Some migration policies can
approach the optimal static
placement performance

● The LRU policy tends to have worse
performance than the window based
policy in both examples

25

Towards An Integrated
Solution

Proposed Integration [1/2]

26

● Use a profile generated by

SHAMBLES, as an

alternative to the profile

generated by Extrae.

● Need to post-process the

data, and generate .csv and

.json files compatible with

the ecoHMEM Advisor.

● Migrations are beyond this

phase of the integration

Proposed Integration [2/2]

27

● Integrate the SHAMBLES

migration code with

FlexMalloc.

● Use the EcoHMEM advisor

for the initial memory

placement.

● Afterwards, trigger

migrations based on

SHAMBLES policies.

Current status

● EcoHMEM
○ Enabled correct interposition for Python applications
○ On-going: Source-to-Source compiler as alternative to FlexMalloc
○ On-going: Adapting profiler to ARM architectures

● SHAMBLES
○ Heatmaps and scatterplots of profiles of various microbenchmarks
○ LRU and Window migration policies implemented
○ Performance evaluation of migration with Masim, Stream and DGEMM

● Integration
○ ecoHMEM running on FORTH infrastructure
○ SHAMBLES profiling generates .csv files compatible with ecoHMEM
○ On-going: Generation of optional .json files for ecoHMEM

28

Concluding Remarks

● Static, profile-based placement transparently and cheaply optimizes applications on

heterogeneous infrastructures

● Applications with different memory access patterns during the execution can benefit

from migrations

● When using migrations, the selection of policy is critical

● Profile-based initial placement and migrations are both needed for best performance

29

Source Code

● ecoHMEM

○ https://www.bsc.es/ca/research-and-development/software-and-apps/softwar

e-list/ecohmem-software-ecosystem-heterogeneous

● SHAMBLES

○ https://github.com/CARV-ICS-FORTH/shambles

29

https://www.bsc.es/ca/research-and-development/software-and-apps/software-list/ecohmem-software-ecosystem-heterogeneous
https://www.bsc.es/ca/research-and-development/software-and-apps/software-list/ecohmem-software-ecosystem-heterogeneous
https://github.com/CARV-ICS-FORTH/shambles

Managing Heterogeneous Memory Infrastructures
EcoHMEM meets SHAMBLES

Thank You

For

Your Attention

Contacts:

Marios Asiminakis: marios4@ics.forth.gr
Hatem El-Shazly: hatem.elshazly@bsc.es

mailto:marios4@ics.forth.gr
mailto:hatem.elshazly@bsc.es

