#### Extra-P: Application Performance Modelling and Application Mapping



TECHNISCHE UNIVERSITÄT DARMSTADT

#### Alexander Geiß, Technical University of Darmstadt

| Eile View Plots Model Help |                                     |                                                                                                                                                                                                                     |              |                      |                            |                              |                |  |  |
|----------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------|----------------------------|------------------------------|----------------|--|--|
| Selection                  |                                     | Ø                                                                                                                                                                                                                   | 3            |                      |                            | Modeler                      | 0 1            |  |  |
| Model:                     | efault Model                        | •                                                                                                                                                                                                                   | Line graph 🗙 | Measurement points X |                            | Model name:                  | New Model      |  |  |
| - House -                  |                                     |                                                                                                                                                                                                                     |              |                      |                            |                              |                |  |  |
| Metric: ti                 | Metric: time                        |                                                                                                                                                                                                                     |              |                      |                            | Model mean                   | Model median   |  |  |
| Sev: Callp                 | ath                                 | Com Value RSS Adj. R <sup>2</sup>                                                                                                                                                                                   |              | Measurem             | nent Points                | Model generato               | r:             |  |  |
|                            | main                                | 3.954x10 <sup>-05</sup> + 3.441x10 <sup>-06</sup> * log <sub>2</sub> (n) - 8.925x10 <sup>-06</sup> * log <sub>2</sub> (gpu) * log <sub>2</sub> (n) 3.160x10 <sup>-10</sup> 0.421                                    |              |                      | cycleTracking(MonteCarlo*) | Default                      | •              |  |  |
|                            | initMC()                            | 1.092x10 <sup>-04</sup> 2.675x10 <sup>-07</sup> 1                                                                                                                                                                   |              |                      |                            |                              |                |  |  |
|                            | <ul> <li>cycleTracking()</li> </ul> | 0.127 - 8.448x10 <sup>-97</sup> * n * log₂(n) + 8.368x10 <sup>-97</sup> * gpu <sup>1</sup> ∕ <sup>4</sup> * n * log₂(n) 0.620 0.994                                                                                 |              |                      |                            | <ul> <li>Advanced</li> </ul> | options        |  |  |
|                            | cudaDeviceSy                        | 0.284 + 0.214 * log <sub>2</sub> (gpu) + 5.134x10 <sup>-12</sup> * n <sup>3/2</sup> * log <sub>2</sub> (n) <sup>2.0</sup> 0.132 0.960                                                                               |              |                      |                            |                              |                |  |  |
|                            | ParticleVault:                      | -0.036 - 1.460x10 <sup>-ve</sup> * n <sup>1/4</sup> * log <sub>2</sub> (n) <sup>2-0</sup> + 6.548x10 <sup>-ve</sup> * gpu <sup>1/3</sup> * n <sup>1/4</sup> 1.318x10 <sup>-ve</sup> 0.941                           |              |                      |                            | G                            | enerate models |  |  |
|                            | ParticleVaultC                      | 1.147x10 <sup>-05</sup> - 4.770x10 <sup>-16</sup> * n * log <sub>2</sub> (n) <sup>2-16</sup> + 4.736x10 <sup>-16</sup> * gpu <sup>1/2</sup> * n 1.551x10 <sup>-14</sup> 0.986                                       |              |                      |                            |                              |                |  |  |
|                            | MC_Particle                         | 0.035 - 1.274x10 ** n *** log2(n) + 6.225x10 ** gpu * n *** log2 0.010 0.983                                                                                                                                        |              |                      |                            |                              |                |  |  |
|                            | MC_Particle                         | 0.331X10 - 1.37/X10 - n + 1.231X10 - gpu - n - 3.028X10 - 0.993                                                                                                                                                     |              |                      |                            |                              |                |  |  |
|                            | MC Particle                         | $-1.221\times10^{-93} + 4.327\times10^{-97} \times n + 2.022\times10^{-97} \times n + 2.022\times10^{-97} \times n + 1.146\times10^{-93} - 0.007$                                                                   |              |                      |                            |                              |                |  |  |
|                            | MC Particle                         | 5 332 v 10 <sup>-06</sup> + 7 950 v 10 <sup>-06</sup> + log <sub>2</sub> (mu) 2 030 v 10 <sup>-06</sup> + 0.000                                                                                                     |              |                      |                            |                              |                |  |  |
|                            | MC Particle                         | 5 537x 10 <sup>-04</sup> + 7.960x 10 <sup>-07</sup> * log <sub>2</sub> (gpu) * n <sup>1/2</sup> * log <sub>2</sub> (n) 1.541x 10 <sup>-04</sup> 0.957                                                               |              |                      |                            |                              |                |  |  |
|                            | MC Particle                         | -5.090x10 <sup>-05</sup> + 5.317x10 <sup>-05</sup> * apu <sup>1/4</sup> 9.756x10 <sup>-11</sup> 0.000                                                                                                               |              |                      | U T                        |                              |                |  |  |
|                            | NVTX Range:                         | 1.087x10 <sup>-03</sup> - 4.702x10 <sup>-10</sup> * n * log <sub>2</sub> (n) <sup>2-0</sup> + 4.671x10 <sup>-10</sup> * gpu <sup>1/4</sup> * n 1.518x10 <sup>-04</sup> 0.986                                        |              |                      | 1 6 <u>é</u>               |                              |                |  |  |
|                            | std::chrono::d                      | 3.284x10 <sup>-03</sup> - 1.629x10 <sup>-09</sup> * n * log <sub>2</sub> (n) <sup>2-0</sup> + 1.622x10 <sup>-09</sup> * gpu <sup>1/4</sup> * n 1.828x10 <sup>-03</sup> 0.986                                        |              |                      |                            |                              |                |  |  |
|                            | std::common                         | 1.823x10 <sup>-03</sup> - 5.312x10 <sup>-08</sup> * n * log <sub>2</sub> (n) + 5.343x10 <sup>-08</sup> * gpu <sup>1/4</sup> * n * l 5.075x10 <sup>-03</sup> 0.987                                                   |              |                      |                            |                              |                |  |  |
|                            | std::enable_if                      | 4.438x10 <sup>-64</sup> - 4.139x10 <sup>-68</sup> * n * log <sub>2</sub> (n) + 4.176x10 <sup>-68</sup> * gpu <sup>1</sup> / <sup>4</sup> * n * l 3.032x10 <sup>-63</sup> 0.988                                      |              |                      |                            |                              |                |  |  |
|                            | ParticleVaultC                      | 2.073x10 <sup>-06</sup> 1.606x10 <sup>-11</sup> 1                                                                                                                                                                   |              |                      |                            |                              |                |  |  |
|                            | ParticleVault:                      | 4.534x10 <sup>-03</sup> - 8.131x10 <sup>-11</sup> * n <sup>4</sup> / <sup>3</sup> * log <sub>2</sub> (n) + 7.520x10 <sup>-11</sup> * gpu <sup>1</sup> / <sup>3</sup> * n <sup>4</sup> 1.701x10 <sup>-04</sup> 0.983 | 3            |                      |                            |                              |                |  |  |
|                            | ParticleVaultC                      | 9.986x10 <sup>-04</sup> - 4.421x10 <sup>-10</sup> * n * log <sub>2</sub> (n) <sup>2-0</sup> + 4.388x10 <sup>-10</sup> * gpu <sup>1/4</sup> * n 1.258x10 <sup>-04</sup> 0.987                                        |              |                      |                            |                              |                |  |  |
|                            | ParticleVaultC                      | 9.468x10 <sup>-64</sup> - 4.393x10 <sup>-16</sup> * n * log <sub>2</sub> (n) <sup>2-6</sup> + 4.364x10 <sup>-16</sup> * gpu <sup>1/4</sup> * n 1.298x10 <sup>-64</sup> 0.986                                        |              |                      |                            |                              |                |  |  |
|                            | ParticleVaultC                      | 5.628x10 <sup>-0s</sup> + 3.848x10 <sup>-0s</sup> * log <sub>2</sub> (gpu) * n * log <sub>2</sub> (n) 8.061x10 <sup>-04</sup> 0.978                                                                                 |              |                      | 600000                     |                              |                |  |  |
|                            | ParticleVaultC                      | 7.377x10 <sup></sup> - 3.874x10 <sup></sup> n * log <sub>2</sub> (n) <sup></sup> + 3.859x10 <sup></sup> * gpu <sup></sup> * n 1.032x10 <sup></sup> 0.986                                                            |              |                      | 1 500000                   |                              |                |  |  |
|                            | ParticleVaultC                      | $1.0/0x10^{-9} - 9.525x10^{-9} n^{-1} \log_2(n) + 9.481x10^{-9} gpu^{-7} n^{-1} l 1.53/x10^{-0} 0.988$                                                                                                              |              |                      | 400000                     |                              |                |  |  |
|                            | ParticleVaultC                      | 0.023 - 1.200-10 <sup>-09</sup> * = * l== (=) <sup>2-0</sup> - 4.070-10 <sup>-11</sup> * ==, <sup>2/3</sup> * l== (== -2.400-10 <sup>-08</sup> 0.001                                                                |              |                      |                            |                              |                |  |  |
|                            | SondOussions                        | $2.475 \times 10^{-03} = 9.763 \times 10^{-10} \times n \times \log_2(n)^{2-0} + 9.573 \times 10^{-10} \times n \times 10^{1/4} \times n = 1.196 \times 10^{-04} - 0.007$                                           |              | 2.5                  | 300000                     |                              |                |  |  |
|                            | SendQueuerro                        | $1.152 \times 10^{-03} = 4.347 \times 10^{-10} \times n \times \log_2(n)^{2-0} + 4.309 \times 10^{-10} \times n \times 1.290 \times 10^{-04} \cdot 0.986$                                                           |              | 5.0 7.5              | 200000 n                   |                              |                |  |  |
|                            | ThreadBlockL                        | 2,965x10 <sup>-05</sup> - 1,338x10 <sup>-04</sup> * log <sub>2</sub> (gpu) + 6,481x10 <sup>-07</sup> * log <sub>2</sub> (gpu) * log <sub>4</sub> 2,112x10 <sup>-09</sup> 0,993                                      |              | 10.0                 | 100000                     |                              |                |  |  |
|                            | CycleTracking                       | 5.218x10 <sup>-04</sup> - 2.738x10 <sup>-04</sup> * log <sub>2</sub> (gpu) + 2.472x10 <sup>-06</sup> * log <sub>2</sub> (gpu) * n <sup>1/2</sup> 2.484x10 <sup>-07</sup> 0.996                                      |              | 12.5<br>15.0         |                            |                              |                |  |  |
|                            | getExecution                        | 4.123x10 <sup>-96</sup> - 1.202x10 <sup>-97</sup> * log <sub>2</sub> (n) 3.041x10 <sup>-12</sup> 0.000                                                                                                              |              | gpa                  | 17.5 0                     |                              |                |  |  |
| 4                          | NB/TV Deserve                       | 1 47310 <sup>-04</sup> 7 40110 <sup>-11</sup> * * I /                                                                                                                                                               |              |                      |                            |                              |                |  |  |
|                            | •                                   | Show model Show parameters                                                                                                                                                                                          |              |                      |                            |                              |                |  |  |
|                            |                                     |                                                                                                                                                                                                                     | E            |                      |                            |                              |                |  |  |
| gpu                        | 1 🗘 🗋                               |                                                                                                                                                                                                                     |              |                      |                            |                              |                |  |  |
| n                          | 1                                   |                                                                                                                                                                                                                     | Graph Limite |                      |                            | 20                           |                |  |  |
|                            |                                     |                                                                                                                                                                                                                     | oraph cinits |                      |                            |                              |                |  |  |
| Color Info                 |                                     | 0                                                                                                                                                                                                                   | ) X-axis     | jpu                  | • max. 19,20               |                              |                |  |  |
| 0.000                      |                                     | 0.649                                                                                                                                                                                                               | Y-axis r     | 1                    | • max. 600000,00           |                              |                |  |  |
|                            |                                     |                                                                                                                                                                                                                     |              |                      |                            |                              |                |  |  |
|                            |                                     |                                                                                                                                                                                                                     |              |                      |                            |                              |                |  |  |

















We need to find scaling issues before they occur We need: a model for performance behavior



#### **Performance model**



Formula that expresses a relevant performance metric as a function of one or more execution parameters



## Automatic empirical performance modelling with Extra-P







Human-readable, multi-parameter performance models

$$f(x_1, \dots, x_m) = \sum_{k=1}^n c_k \prod_{l=1}^m x_l^{i_{kl}} \cdot \log_2^{j_{kl}}(x_l)$$

#### **Modelling process**



TECHNISCHE UNIVERSITÄT DARMSTADT

Performance model normal form



#### **Assumptions & limitations**



- Scaling behaviour expressible with performance model normal form
- Only one scaling behaviour for all the measurements; no jumps
- Some MPI collective operations switch their algorithm
  - results in bad models
- Example: red model tries to model measurements of different algorithms
  - First 4 points one function
  - Last 4 points another function (linear)



### Modelling application requirements





Lulesh

#### Models represent per-process effects

- p number of processes
- n problem size per process

| Requirement      | Metric                 | Model                                                     |
|------------------|------------------------|-----------------------------------------------------------|
| Computation      | #FLOPs                 | $10^5 \cdot n \cdot \log(n) \cdot p^{0.25} \cdot \log(p)$ |
| Communication    | #Bytes sent & received | $10^3 \cdot n \cdot p^{0.25} \cdot \log(p)$               |
| Memory access    | #Loads & stores        | $10^5 \cdot n \cdot \log(n) \cdot \log(p)$                |
| Memory footprint | #Bytes used            | $10^5 \cdot n \cdot \log(n)$                              |
| Memory locality  | Stack distance         | Constant                                                  |





## **UPCOMING FEATURES**

#### **GPU** Applications







#### **Generating GPU models**





#### Usage

Has the GPU version similar scaling behaviour? Has the GPU version similar or better performance?



- Is runtime of CPU only > host computation + data transfer time + runtime on accelerator?
  - Comparison of CPU app model with models for host computation, data transfer and kernels
- How much work can the CPU do, while the GPU is doing the offloaded work?
  - Synchronization model
- Is the GPU well utilized?
  - Idle time model







#### How to map an app onto MSA systems?





#### How to map an app onto MSA systems?





#### How to map an app onto MSA systems?





# How to find a good mapping? Computation Computation Communication

9/3/2021 | Department of Computer Science | Laboratory for Parallel Programming | Alexander Geiß | 20

### How to map an app onto MSA systems?



#### **Objectives**



# Design a strategy for mapping application parts to the MSA modules

Create support for model comparison Create portable performance models Use these models to determine best target modules

Reduce user involvement, if possible

### Summary



- Applications can exhibit unwanted performance behaviour when scaling up
- Performance models help to find issues before they occur
  - Laborious to do by hand
  - Extra-P automates this step
- Extra-P will also support GPUs
  - Helps checking for optimization opportunities and unwanted behaviour
- Extra-P will assist in mapping of applications onto MSA systems

Check your app with Extra-P before scaling up!

Find it on GitHub: https://github.com/extra-p/extrap