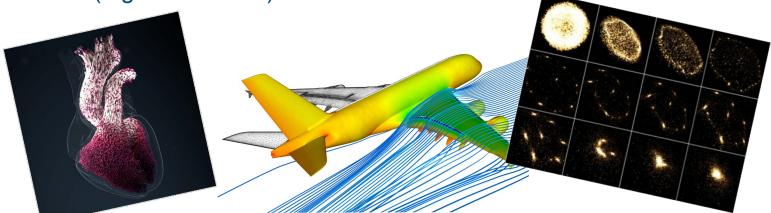
www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MUSA: MUltilevel Simulation Approach DEEP-SEA

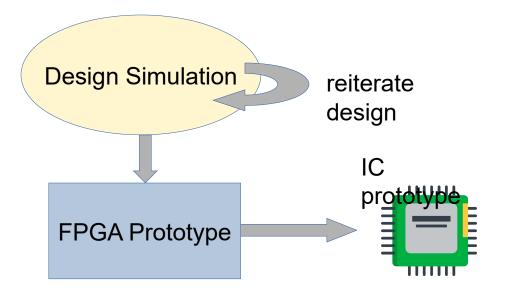

Dimitrios Chasapis (dimitrios.chasapis@bsc.es) BSC-CNS

1st October 2021

Motivation

(Simulation in Science and Industry

- Abstract algorithmic representation of natural and human-made systems
- "Simulate" it with the use of computers
- Wide range of application:
 - Try industrial designs without the need to manufacture expensive prototypes (e.g. aerodynamics in aviation industry)
 - Observe and predict physical phenomenons at a fraction of both financial costs and time (e.g. nuclear fusion, astronomy)
 - Low risk (e.g. health care)



Motivation

(Guiding computer architecture design with simulations

- Reduce development time and cost writing software is cheaper than prototyping IC chips.
- Intel, AMD and ARM all use in-house simulators in their R&D departments
- Need to navigate through a constantly expanding design space
 - Try ideas fast and cheap

- Image: Computers with... computers what could go wrong?
 - Introduces some error
 - Abstraction may not describe a system with 100% accuracy
 - We cannot compare with native executions
 - Very slow compared to native execution
 - Every instruction introduces overhead
 - About 2 MIPS → e.g. 10 seconds of native execution can take many hours
- **(**MUltilevel Simulation Approach MUSA
 - Multiple levels of abstraction at varying levels of detail
 - Speedup simulation \rightarrow can be faster than native execution
 - Can simulate thousands of cores

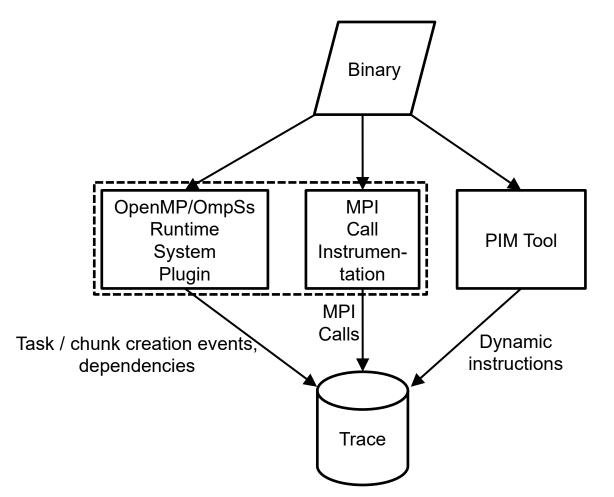
(HPC applications stress systems at multiple levels

- Hardware: CPU, Memory, Network
- Software: Scheduling, Synchronization, Communication

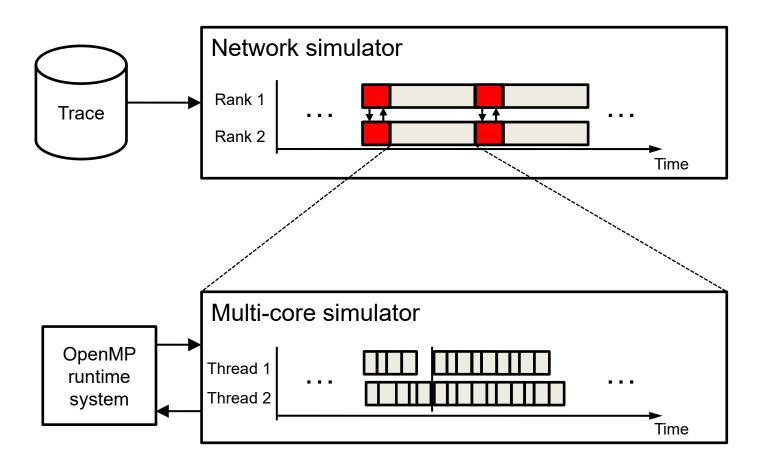
(Need a practical way to capture all the levels

(Combine multiple levels of simulation detail

- Detailed mode: cycle accurate simulation
- High level mode: analytical-model


(Allows us to simulate large scale machines with thousands of cores in reasonable time

- (Targets hybrid HPC applications
 - MPI + OpenMP/OmpSs
- C Dimemas analytical model used for MPI
- TaskSim simulator is used for OpenMP/OmpSs
- (Trace-based simulation
 - Three levels of tracing
 - MPI level
 - OpenMP/OmpSs level
 - Instruction level

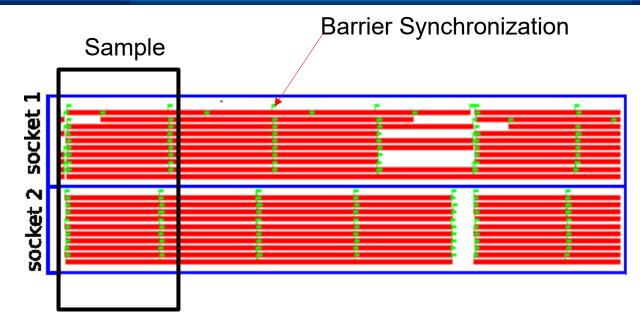


(Trace-based Simulation

(Simulation

TaskSim – Architectural Simulator

- (Two modes of simulation
- (Burst mode
 - Execute higher level events (e.g. task creation, synchronization, scheduling)
 - Faster than native execution
 - Does not consider memory contention within node
 - Useful for quick exploration of large design spaces
- (Detailed mode
 - Cycle-accurate simulation
 - Very slow
 - Higher accuracy than burst mode



TaskSim – Speeding up detailed simulations

- (Use sampling to balance speed and accuracy
- (Sampling can be applied orthogonally on all three levels
 - MPI:
 - Periodic Sampling of ranks (simulate 1 rank for every N ranks)
 - Burst and/or Detailed mode:
 - Manually or automatically (e.g. TaskPoint) identify and mark iterative phases
 - Tasks, loop constructs and synchronization primitives can be used by tools such as TaskPoint to identify repetitive patterns
 - User can use Paraver tool to visualize application traces and sample manually

TaskSim – Speeding up detailed simulations

((Use Paraver to visualize trace file

(Sample can be run once, and then fast-forward the result

MUSA – DEEP-SEA Extensions

(Vector engine extension

- Important component in all HPC architectures
- Currently supports simple vector instructions
 - 128 to 2048 vector lengths
- Support for RISC-V, ARM, x86
- (Heterogeneous Memory
 - More representative of modern systems
 - Accelerators, heterogeneous nodes
 - Important to study NUMA effects
 - Both hardware and software

www.bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

MUSA: MUltilevel Simulation Approach DEEP-SEA

Dimitrios Chasapis (dimitrios.chasapis@bsc.es) BSC-CNS