
A. Chazapis, F. Nikolaidis • FORTH-ICS/CARV

Running Kubernetes Workloads on HPC
ȁȃ/ȁ/ȁǿȁȂ • DEEP-SEMINARS



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Similarities:
● Hardware (CPUs, GPUs, network)
● Use of a deployment runtime
● Containers possible
● ...

Differences:
● Tight parallelization vs. data distribution
● MPI++ vs. large selection of frameworks
● Build binaries vs. microservices
● Deploy with scripts vs. YAML recipes
● Use console (ssh) vs GUIs (browser)
● ...

User wants to write a scalable application on distributed hardware... HPC or Cloud?

Motivation

ȁ

Convergence is about seamless transition between 
environments and combining the best of both worlds 



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Ȁ KNoC is a Kubernetes node to manage container lifecycle on HPC clusters: https://github.com/CARV-ICS-FORTH/knoc (InteractiveHPC ȁǿȁȁ)
ȁ Genisys is a Kubernetes scheduler for running HPC jobs inside Virtual Clusters alongside other services: https://github.com/CARV-ICS-FORTH/genisys 
(VHPC’ȁȁ)

Ȃ

● Kubernetes is the mainstream runtime for using Cloud resources
● Kubernetes vs. the typical HPC software stack (Slurm)

○ Central "control plane" → Scheduling and placement decisions
○ Agents on every node → Handles execution
○ Monitoring and accounting infrastructure

● "Hybrid" solutions bridge the two environmentsȀ

○ Implement mechanisms for submitting HPC jobs from the Cloud side or vice versa
○ Two separate setups (hardware and maintenance costs)

● Accommodate both Cloud and HPC on the same hardwareȁ

○ Possible because of similar hardware specifications, portability through containers
○ Embed one software stack within the other → Delegate core functions, as we can only have one cluster manager

Kubernetes on HPC



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

ȃ

Kubernetes is a container orchestration runtime

● It manages the container lifecycle
○ Containers are lightweight (vs. VMs) and portable
○ Interface to the container runtime → Docker/containerd

● It is not only a scheduler
○ It handles networking between containers
○ It provides service discovery and load balancing 

mechanisms 
○ It reacts to load (scaling) and failures

● It runs almost everywhere
○ Any scale → desktop to Cloud
○ Most architectures
○ Runs as a system service → Needs "elevated" permissions

Image source: https://discuss.newrelic.com/t/relic-solution-what-you-need-to-know-about-new-relic-when-deploying-with-docker/ȄȁȃȈȁ

So... Kubernetes?



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Ȅ

● Declarative vs imperative
● API endpoint & controllers
● Abstractions

○ Pods → Collection of containers
○ Deployments → Replicated pod groups
○ Services → Microservice naming 
○ Jobs → Pods that run to completion
○ Volumes → Mountable file collections
○ Labels → Queryable metadata
○ ...

● DevOps compliant
○ Infrastructure as code
○ Version rollouts
○ CI/CD workflows
○ ...

Kubernetes concepts

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes core components layout

ȅ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

API server etcd

The main entrypoint for all 
requests to the cluster, the 
point of sync for all 
controllers.

A key/value store holding 
current and desired states.



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes core components layout

Ȇ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

Controller manager

Scheduler

CoreDNS

Watches for changes and 
performs necessary actions 
to reach the desired state. Selects nodes to place new 

pods on.

Storage controller

Internal discovery for cluster 
services and pods.

Allocates storage to match 
volume claims.



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes core components layout

ȇ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

Proxy

Kubelet

Network plugin

Node agent, implementing 
the pod lifecycle using the 
container runtime.

Creates routes for virtual IP 
addresses used by services 
(i.e., load balancing).

Assigns cluster-wide IPs to 
pods and manages 
cross-node routing.

Virtual IPs used 
by services

Virtual IPs used 
by pods



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes core components layout

Ȉ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

create pod store

schedule place

run
configure 
networking

service routing

register



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Requirements:
● All Kubernetes abstractions should be 

available and fully functional
○ Except those that affect physical hardware resources 

(like NodePort services)
○ Private, inter-container network and internal DNS 

should work as expected

● Delegate resource management to Slurm
○ Respect organization policies
○ Comply with established resource accounting 

mechanisms
○ Scale across all nodes of the cluster

● Use Singularity as the container runtime
○ Preinstalled in most HPC environments

● Make it easy for HPC administrators
○ No (or little) configuration changes should be 

required at the host level
○ No reliance on special libraries or binaries that 

execute with "elevated" permissions

● Make it easy for users
○ All neatly packaged up in one container
○ Simple, one-command deployment via Slurm
○ All relevant configuration and files should be in the 

user's home folder

Design goals

Ȁǿ

Run Kubernetes in an HPC environment as a user → High-Performance Kubernetes (HPK)



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes components in HPK

ȀȀ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

API server etcd

Controller manager

CoreDNS

Services that run "out of the 
box", with no special 
dependencies, or minimal 
changes.

Storage controller



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Kubernetes components in HPK

Ȁȁ

Kubernetes

API server etcd

Controller manager

Scheduler

CoreDNS

Storage controller

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Proxy

Kubelet Container runtime

Routing tables

Network plugin

Master node

Worker node

Worker node

kubectl

Scheduler

Proxy

Kubelet Container runtime

Network plugin

Implement a Pass-through 
scheduler that always selects 
hpk-kubelet.

Implement hpk-kubelet, that 
translates Kubernetes actions 
into Slurm/Singularity 
scripts.

Rewrite services to explicitly 
disable ClusterIPs.

Setup Singularity with an 
external CNI plugin, such as 
Flannel.

Use nested Singularity for 
single IP address per pod, 
fakeroot for Docker image 
compatibility.

Virtual IPs used 
by services

Virtual IPs used 
by pods



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

ȀȂ

API server etcd

Controller manager

Pass-through scheduler

CoreDNS

Service adm. controller

Control plane container

Storage controller

hpk-kubelet

kubectl

Slurm agent Container runtime

Network pluginCluster node

Slurm agent Container runtime

Network pluginCluster node

HPK

Slurm controller Scheduler

Cluster manager Accounting

HPK architecture



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Ȁȃ

API server etcd

Controller manager

Pass-through scheduler

CoreDNS

Service adm. controller

Control plane container

Storage controller

hpk-kubelet

kubectl

Slurm agent Container runtime

Network pluginCluster node

Slurm agent Container runtime

Network pluginCluster node

HPK

Slurm controller Scheduler

Cluster manager Accounting

HPK architecture

run schedule and place

configure 
networking

create pod store

schedule

register

place

run



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

● HPK is Kubernetes-in-a-box
○ Custom kubelet for the execution of containers
○ Changes in various other components to enable the 

integration
● HPK runs as a user process via Slurm

○ User can run both Kubernetes and Slurm 
workloads at the same time

○ No "special" allocation needed for HPK → Ȁ CPU, 
few GBs of RAM should be enough

○ Little support needed by the environment → No 
Slurm modifications, some Singularity 
configuration

● HPK translates Kubernetes to Slurm scripts
○ Pods/jobs show enter as YAML through the 

Kubernetes API, exit as Slurm scripts from 
hpk-kubelet → Pods show up as Slurm jobs

○ Kubernetes resource requirements end up in Slurm 
allocation requests → No changes to accounting

HPK implementation

ȀȄ

Singularity

HPK (Kubernetes)

Slurm

Slurm scripts

YAML workflow

Resources requested 
in YAML



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

● System requirements identified for inter-container networking, Docker image compatibility
○ Singularity should be configured to use Flannel (or other CNI) for assigning cluster-wide IPs
○ Singularity should allow running as fakeroot

● Summary of Kubernetes changes
○ Kubernetes-from-scratch recipe for bootstrapping Kubernetes (generate keys, start basic services)
○ API server, etcd, controller manager, CoreDNS working out of the box
○ Custom pass-through scheduler always selects the first node → Effectively no scheduling from Kubernetes
○ Custom controller disables ClusterIP services → Effectively no need for kube-proxy (no IP range for services)
○ Custom kubelet, which we call hpk-kubelet → Kubernetes-to-Slurm/Singularity translator
○ OpenEBS storage provisioner integrated → Maps Kubernetes volume requests to local storage (in the user's home folder)

● Proof-of-concept applications
○ Argo Workflows with artifacts on MinIO (SȂ service) → Can also be used for MPI steps
○ Spark operator
○ TensorFlow Serving
○ Several examples

Current status

Ȁȅ



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Workflow frontend

ȀȆ



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

Workflow example

Ȁȇ

● Containerize code for portability
● Define pass-through flags for Slurm 

via annotations
○ Control scalability
○ Allocate GPUs

● Combine with other tasks in a single 
workflow

● Use high-level parameters, shared 
across all steps

● Integrate other Cloud-native tools slurm-job.hpk.io/flags
slurm-job.hpk.io/mpi-flag
s



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

● Cloud-user PoV → Run on HPC hardware
● HPC-user PoV → Exploit the Cloud software ecosystem

○ Combine HPC codes with backend services (database, queueing systems)
○ Interactive code execution → Jupyter
○ Workflow management → Argo Workflows, Apache Airflow, ...
○ Monitoring utilities → Grafana
○ Frameworks for automatically optimizing and scaling code → Spark, DASK, ...

● HPC centre PoV → Run Cloud workloads on the main HPC partition
○ The common practice is to have separate partitions for Cloud (analytics) and HPC

Benefits

ȀȈ



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

● Large-scale applications in real clusters → Get feedback from users
● Packaging for easier deployment

○ User runs one script and everything else is downloaded and started automatically

● Future development tasks
○ Exploit GPUs, fast networking
○ Port forwarding to the login node using kubectl (?)

Next steps

ȁǿ



CARV • ICS • FORTHRunning Kubernetes Workloads on HPC

ȁȀ

HPK will soon be available at https://github.com/CARV-ICS-FORTH

Acknowledgements


