VEF Traces Framework Tutorial

Francisco J. Andujar
Universidad de Valladolid

Jesus Escudero-Sahuquillo, Pedro J. Garcia, Francisco
J. Alfaro, José L. Sanchez and Francisco J. Quiles

Universidad de Castilla-La Mancha

'I'rcsgo Ne tworks

and Architectures

jesus.escudero@uclm.es

This work has been supported by the Spanish Ministerio de Ciencia e Innovacién, under the project PID2019-109001RA-I00

mailto:jesus.escudero@uclm.es

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3 party simulation tools
e Extending the VEF Traces framework

The VEF Traces Framework Tutorial, 28 September 2021.

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3 party simulation tools
e Extending the VEF Traces framework

The VEF Traces Framework Tutorial, 28 September 2021.

What is the VEF Traces framework?

* An open-source framework to generate traces from MPI workloads.

* An off-line simulation environment to supply workloads to
interconnection network simulators

* A framework independent of the simulation platform:
e Currently integrated in multiple interconnection network simulators

* It provides a self-related trace model, which assumes that:

« Communications do not depend on absolute timestamps (although we obtain
them for statistical purposes).

* |tis highly probable that communications generating packets in the network
depend on received packets generated by previous communications

What is the VEF Traces framework?

VEF traces
An easy 'o model MPI traffic in network si

 The VEF Trace framework comprises two
open-source C libraries:

* VEF Prospector: captures the trace directly from
the MPI application using the MPI standard
profiling interface (PMPI)

* VEF TracellB: feeds the network simulator using

VEF traces homepage

VEF traces
* VEF Traces framework tools are available v ES———
through our webpage and GIT repositories: N

O Paccages & Registries

* http://www.i3a.uclm.es/VEFtraces/
* https://gitraap.i3a.info/fandujar/VEF-TracelLIB
e https://gitraap.i3a.info/fandujar/VEF-Prospector

Package dzperdencies:

& Collzpse sidebar

The VEF Traces Framework Tutorial, 28 September 2021. 5

https://gitraap.i3a.info/fandujar/VEF-TraceLIB
https://gitraap.i3a.info/fandujar/VEF-TraceLIB
https://gitraap.i3a.info/fandujar/VEF-Prospector

Obtaining VEF traces

cpll PMPI_function()

(o

1. Header

Vg - 2. Communicators
' 3. Records

call MPI_functior{)

Binary
Application

VEF-Prospector =y

ooo

The VEF Traces Framework Tutorial, 28 September 2021.

What is a self-related trace?

Let’s consider tasks A and B:

1: TaskA: 1: TaskB:

2: while true do 2: while true do

3: SEND(MessageA, TaskB) 3. RECV(MessageA, TaskA)
4: [/Computation 4: [//Computation

5: RECV(MessageB, TaskB) 5: SEND(MessageB, TaskA)
6: //Computation 6: //Computation

7: end while 7:- end while

The VEF Traces Framework Tutorial, 28 September 2021.

The problem of absolute timestamps

Considering absolute timestamps and ignoring the message size, a possible
trace is:

SOURCE DESTINATION TIMESTAMP

A B 0

B A 200
A B 400
B A 600
A B 800
B A 1000

The VEF Traces Framework Tutorial, 28 September 2021.

The problem of absolute timestamps

The execution time only depends on the last message in the trace!!!

Cycles Cycles

(0F o 0=
100 ; 100 ;
200 ; 200 :-—
300 :- 300 :——
400 .—— 400 ':
so0 |- 500 b=
600 = 600 :
700 :. 700 ;
800 ; 800 :.
200 '-— 200 :.
1000 '—— 1000 ._—
1100 = 1100 ;
1200 .:. 1200 :-—

200-cycle message delivery 100-cycle message delivery

The VEF Traces Framework Tutorial, 28 September 2021.

Self-related trace

Self-related record: Its execution depends on the execution of a previous record

The network latency and throughput impact on the execution time!!!

Idle time o Idle time et
(200 cycles) = (100 cycles) s}
100-cycle message delivery 50-cycle message delivery

The VEF Traces Framework Tutorial, 28 September 2021. 10

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3 party simulation tools
e Extending the VEF Traces framework

The VEF Traces Framework Tutorial, 28 September 2021.

11

VEF trace format

Type of records:

VEF3 4 5 2 3 10 01000

COo0123
Cl23

GOCO0O0O4000-1

GOCO010400-1

GOCO020400-1

GOCO0O30400-1
00116 3 300 GO
110323 250 GO
21212811001
32203 200 GO

42142100 2

G1C102401 250 4

G1C103043800G0
G2C01004 23001
G2C011401 3502

G2C012403 100 G1

G2C013403100G1

12

The VEF Traces Framework Tutorial, 28 September 2021.

VEF trace format

Type of records:

1. Trace header

VEF3 4 5 2 3 10 01000

CO 0123
Cl23

GOCO0O0O4000-1

GOCO010400-1

GOCO020400-1

GOCO0O30400-1
00116 3 300 GO
110323 250 GO
21212811001
32203 200 GO

42142100 2

G1C102401 250 4

G1C103043800G0
G2C01004 23001
G2C011401 3502

G2C012403 100 G1

G2C013403100G1

13

The VEF Traces Framework Tutorial, 28 September 2021.

VEF trace format

Type of records:

1. Trace header

VEF3 4 5 2 3 10 01000

CO 0123
Cl123

2. Communicators (or COMMs)

GOCO0O0O4000-1

GOCO010400-1

GOCO020400-1

GOCO0O30400-1
00116 3 300 GO
110323 250 GO
21212811001
32203 200 GO

42142100 2

G1C102401 250 4

G1C103043800G0
G2C01004 23001
G2C011401 3502

G2C012403 100 G1

G2C013403100G1

14

The VEF Traces Framework Tutorial, 28 September 2021.

1. Trace header
2. Communicators (or COMMs)

Type of records:

VEF trace format

VEF3 4 5 2 3 10 01000

COo0123
Cl123

3. Point-to-point message records

GOCO0O0O4000-1

GOCO010400-1

GOCO020400-1

GOCO0O30400-1
00116 3 300 GO
110 323 250 GO
212128 11001
32203200 GO

42142100 2

G1C102401 250 4

G1C103043800G0
G2C01004 23001
G2C011401 3502

G2C012403 100 G1

G2C013403100G1

15

The VEF Traces Framework Tutorial, 28 September 2021.

3 10 01000

VEF trace format

Type of records:

1. Trace header

2. Communicators (or COMMs)
3. Point-to-point message records
4

The VEF Traces Framework Tutorial, 28 September 2021.

16

= m
NNk R PCeO ©

N R

VEF trace format

Type of records:

1. Trace header

2. Communicators (or COMMs)

3. Point-to-point message records
4. Collective communication records

The last three fields express the self-
relationship between records:

The VEF Traces Framework Tutorial, 28 September 2021.

= m
NNk R PCeO ©

N R

VEF trace format

Type of records:

1. Trace header

2. Communicators (or COMMs)

3. Point-to-point message records
4. Collective communication records

The last three fields express the self-

relationship between records:

« Dependency type (0:independent,
1:send, 2:receive or 3:collective comm)

The VEF Traces Framework Tutorial, 28 September 2021.

= m
NNk R PCeO ©

N R

VEF trace format

Type of records:

1. Trace header

2. Communicators (or COMMs)

3. Point-to-point message records
4. Collective communication records

The last three fields express the self-
relationship between records:

« Dependency type (0:independent,
1:send, 2:receive or 3:collective comm)

« Dependency time for record execution

The VEF Traces Framework Tutorial, 28 September 2021.

- m
NNHHOOOOO ©

N R

VEF trace format

Type of records:

1. Trace header

2. Communicators (or COMMs)

3. Point-to-point message records
4. Collective communication records

The last three fields express the self-

relationship between records:

« Dependency type (0:independent,
1:send, 2:receive or 3:collective comm)

« Dependency time for record execution

« Dependency ID: Identifier of the
previous record which the current
record is waiting for.

The VEF Traces Framework Tutorial, 28 September 2021.

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3 party simulation tools
e Extending the VEF Traces framework

The VEF Traces Framework Tutorial, 28 September 2021.

21

Obtaining VEF Traces

call MPI_function() call PMPI_function()
* VEF Prospector:
* Open-source tool that profiles an
. . L TraceLIB
MPI application and generates i
VEF-traces files. s [T
vef '
* GNU General Public License. Ao R icpary

* Download:
S git clone https://gitraap.i3a.info/fandujar/VEF-Prospector.git

* Package dependencies:
* cmake (>= 2.6)
 MPI distribution (tested with OPEN MPI and MPICH2)

The VEF Traces Framework Tutorial, 28 September 2021. 22

Obtaining VEF Traces

* Installation (after the repository has been cloned):

$ cd VEF-Prospector
$ cmake . -DCMAKE INSTALL PREFIX="installation folder"

S make
S make install

e For the installation folder, we recommend suomME/opt

* If the installation folder is not set using -pcrvake 1nsTaLLn prEFIX, the
tools are installed by default in saoME/1ocal/vef prospector

The VEF Traces Framework Tutorial, 28 September 2021.

23

Obtaining VEF Traces

Executables in the VEF-Prospector repo

e vef_mixer: mix the temporary files generated by the instrumentation library
to obtain the VEF traces.

e vef_tmp_reader: allows to read in "human" format the temporary files.

* vef2_updater: Update VEF traces in format VEF2 to VEF traces in format
VEF3

* prospector_debugger: used for development purposes, it is not required to
obtain VEF traces.

e vmpirun: wraps the mpirun command and loads the instrumentation library.

e vimpirun: wraps the mpirun command and loads the "full-version" of the
instrumentation library.

* repasaVEF: reads a VEF trace and characterizes its traffic in several data files

Obtaining VEF Traces

Libraries

* libvefprospector.so (MPI Instrumentation library). It captures the MPI calls supported by
the VEF traces. When a non-supported call is captured, the process to capture the MPI calls
may be aborted, depending on the environment variable
VEFP IGNORE NON MODELLED CALLS.

 |f this variable is not set or set to zero, when a non supported call is captured the MPI application is
aborted, notifying also the unsupported call that causes the failure.

» |f this variable set to an integer greater than zero, the unsupported calls are ignored. However, it is
possible that the temporary files could not be merged in a VEF trace. See "Modelled MPI calls" for
detailed information.

 libvefprospector_full.so: "full" MPI Instrumentation library. This library captures the most
important MPI calls, although these calls are not supported by the VEF traces (e.g.
MPI_Waitany() or MPI_ReduceScatter(), or all the non-blocking collective communications
of MPI 3). It's useful to get more information in the temporary files, but there is no
advantages in use the full version to generate the VEF traces.

The VEF Traces Framework Tutorial, 28 September 2021. 25

Obtaining VEF Traces

* To obtain VEF traces, replace the mpirun command by the vmpirun
command. For example:
$ vmpirun -np 16 ./my mpi app

* A new folder will be generated using the application name and a timestamp.
Following the previous example, the library will generate a folder called:

my mpli app-AAAA-MM-DD-HH-MM-SS

* Once the MPI application ends, the trace folder will be contain multiple .veft
and .comm files (one .veft file and one .comm file per MPI task).

* The veft files contain the mpi calls of the task,
* while the comm files contain all the MPI communicators used by this task.

* The information of these files can be read using the executable vef _tmp_reader.

The VEF Traces Framework Tutorial, 28 September 2021.

26

Obtaining VEF Traces

* Another file called VEFT.main will be used to generate the VEF traces,
using the vef_mixer executable:

$ vef mixer -i VEFT.malin -o output trace.vef

* This finishes the process to generate a VEF trace.

* VEF Traces can be tested using the tracetor tool, provided with the
TracelLlIB library.

The VEF Traces Framework Tutorial, 28 September 2021. 27

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3"d party simulation tools
e Extending the VEF Traces framework

The VEF Traces Framework Tutorial, 28 September 2021.

28

Features of VEF TracelLIB

* |t reads the VEF traces and communicates with the network simulator.
e Simulation of simultaneous traces.
* Flexible mapping scheme of tasks to NICs.

 Models the message exchange in collective communications:
* The collective communication records only models the MPI collective comm.
* Implementations based on the OpenMPI algorithms.
* Possibility to implement their own collective communication functions.

Broadcast O(n) Broadcast O(logn)
(Task-o) CTask—1) CTask—Z) (Task—3) @ Cm (Task-2) (Task-3)
—’ ’
> —p —P
>

The VEF Traces Framework Tutorial, 28 September 2021. 29

Installing VEF TracelLIB

* Download:
$ git clone https://gitraap.i3a.info/fandujar/VEF-TraceLIB.git

* Installation:
* Packet dependencies: cmake (>= 2.6)

* Once the package has been cloned:
S cd VEF-TraceLIB

$ cmake . -DCMAKE INSTALL PREFIX="installation folder"
S make

S make install

* If the installation folder is not set using -DCMAKE INSTALL PREFIX, the tools are
installed in SHOME/local/vef tracelib

The VEF Traces Framework Tutorial, 28 September 2021.

30

https://gitraap.i3a.info/fandujar/VEF-TraceLIB.git

Using VEF TraceLIB in your simulator

 Declaration and initialization of the VEF traces data structures:

int main(int argc, char * const argv|])

|
/* Simulator clock */
int sim_clock=0;
/* Configure the simulator */
sim_config();
/* TraceLIB configuration struct */

conf_t my_conf;

my_conf.simNodes = sim_num_nodes;

my_conf.number_of traces = 1;

/* Set the fields of my conf and initialize TraceLIB x*/
init_MultipleTraceManager(&my_conf);

74 PP * /

The VEF Traces Framework Tutorial, 28 September 2021.

31

Using VEF TraceLIB in your simulator

 Starting simulation and sending messages to the simulator:

/* Start the simulation. The simulation finishes when the
TraceLIB completes the trace execution */
while (/isTraceComplete())

{

/* TraceLIB Message struct */
msg_-t msg;
/* Does TraceLIB have messages to inject at current cycle?
*/
while (areMsgstoGet())

{

/* Get the message and program the generation event */
getMsgTrace(&msg);
putEvent(GENERATION_EVENT, sim_clock, msg);

}

/* Process the events programmed for the current cycle */
processEvents(sim_clock);
/* ... */

The VEF Traces Framework Tutorial, 28 September 2021.

32

Using VEF TraceLIB in your simulator

 Comunicating a message reception to TracelLIB:
while (/isTraceComplete())

{
/* ... */
/* Check if there are received messages after the event
processing */
while (areReceivedMsg())

{

msg_t msg;
/* Get the received message and report to TraceLIB */
getReceivedMessage(&msg);
ReceiveTraceMsg(msg.dst, msg.id);
}
/* Update the clocks */
sim_clock++;
clock_tictac();
}
/* The simulation finishes and the statistics are recorded. */
record _sim _stats();

The VEF Traces Framework Tutorial, 28 September 2021.

Using the tracetor tool

* |t is installed automatically with the Tracelib library

* Optional arguments:

-n|-N : number of NICS

-f|-F : factor time. Default: 1

-c|-C : simulation clock. Default: no use (overwrite -F flag if this flag is specified)
-w|-W : size of window. Default: 1000

-nicSize: size of NIC in bytes. Default 0 (ideal NIC)

-nicBW: input bandwitch of NIC in bytes/cycle. Default 0 (ideal NIC)

-intra|-INTRA: bandwitch of intra Cards in bytes/cycle. Default: 0 (Ideal intra card.)
-MPI|-mpi :type of MPI groupComm. Default: 1 (OPENMPI basic O(N))

-cpuXnic: sets the CPUS attached per NIC

-NOC: reads the .names file to automap the memory devices

-h|-H : show this text

The VEF Traces Framework Tutorial, 28 September 2021.

34

Agenda

* The VEF Traces Framework

* VEF Trace Format

* Obtaining VEF Traces

 Using Tracelib in 3 party simulation tools

e Extending the VEF Traces framework (work-in-progress)

The VEF Traces Framework Tutorial, 28 September 2021.

35

Extending VEF traces (WIP)

e Data-center networks (DCNs) exhibit different network workloads than HPC
applications based on MPI

* Web search, social network, streaming, etc.
* These applications require to exchange large amount of data

* Normally, we do not have a datacenter to instrumentalize the network and to
model its traffic (as we do with MPI-based applications).

 Modeling DCNs workloads is crucial.
* How can implement DCN workloads in the VEF trace framework?

The VEF Traces Framework Tutorial, 28 September 2021. 36

Extending VEF traces (WIP)

* How can implement DCN workloads in VEF trace framework?
 We have added a new trace format: The Extended VEF trace format:
* An extended header register defines the type of traffic model

* One or more body registers define the characteristics of the traffic model
* This scheme can be used to add more traffic models, not only DCN workloads

 VEF-TracelLIB has been modified to read these new trace format:

Only the code of the trace reader has been modified.

The new trace reader generates internal messages using the same structures than the MPI
traces, avoiding changes in other parts of the library.

All the library features are available for extended traces
And no changes in the library interface are required.

From the user’s point of view, there are no differences between simulating a MPI VEF trace or
an Extended VEF trace.

In fact, MPIl and Extended VEF traces can be simultaneously simulated

Extended VEF trace format (WIP)

Type of records:
1. Trace header
- Same format than MPI traces

VEF3 64 200000 0000 1000
EXT DCNW
GOOGLE_SEARCH GAUSS LOAD 0.5

The VEF Traces Framework Tutorial, 28 September 2021.

38

Extended VEF trace format (WIP)

Type of records:
1. Trace header

Same format than MPI traces
2. Extended Header

« EXT indicates that this is an
extended trace

« DCNVW indicates the workload model

VEF3 64 200000 0000 1000
EXT DCNW
GOOGLE_SEARCH GAUSS LOAD 0.5

The VEF Traces Framework Tutorial, 28 September 2021. 39

Extended VEF trace format (WIP)

Type of records:
1. Trace header

VEF3 64 200000 0000 1000
EXT DCNW

Same format than MPI traces

2. Extended Header

EXT indicates that this is an
extended trace

DCNW indicates the workload model

Configures the model.
Depends on the workload models

Its number depends on the workload
model

The VEF Traces Framework Tutorial, 28 September 2021.

40

DCN traffic models for Extended VEF traces
(WIP)

* The DCN traffic models are based on date obtained from published papers.

* We support two DCNs traffic models:

« DCNW model: Simulates different workload models reported by several companies
like Facebook or Google

* Based on the workloads collected by Montazery et al. in their work “Homa: a receiver-driven
low-latency transport protocol using network priorities”

 FLOWS model: Simulates multiples traffic classes to define different services in the
DCN. Each traffic class comprises several flows of data with different
characterizations

* Based on the workloads defined in the paper “Modeling Traffic Workloads in Data-center
Network Simulation Tools” by Gonzalez-Naharro et al, HPCS 2019.

* The traces can be manually created according their format or using an
interactive application provided with VEF Trace-LIB

The VEF Traces Framework Tutorial, 28 September 2021. 41

VEF3 64 00001000
EXT DCNW
FB_HADOOP GAUSS

DCNW model (WIP)

Characterization of DCNW model

1. The trace header indicates the number of tasks and the
to send.

2. Model: specifies the message size distribution, based on files
with the accumulated probability

« Multiple distributions, such as Facebook Hadoop servers,
Google search servers, etc.

« Also allows custom message size distributions

3. Message generation distribution: Depends on the Model
selected. It can be a Pareto or an exponential distribution

. to increase or reduce the
network load.

4. Destination distribution: specifies the distribution of the
message destination

« Uniform, gaussian and poison distribution available

The VEF Traces Framework Tutorial, 28 September 2021. 42

FLOWS model (WIP)

Characterization of FLOWS model

1. The trace header indicates the number of tasks and the
to send.

2. Main configuration: indicates the number of classes, the
maximum time to generate the flows,

VEF3 64 0000 1000
EXT FLOWS

CLASSES 2 TIME 2000000
0 MAX 100 MIN 10 PERC 45.5
1 MIN 1000 PERC 54.5 GAUSS MAX 10000

The VEF Traces Framework Tutorial, 28 September 2021.

43

FLOWS model (WIP)

Characterization of FLOWS model

1. The trace header indicates the number of tasks and the
number of flows to send.

2. Main configuration: indicates the number of classes, the
maximum time to generate the flows, and the default
destination distribution (same distributions than DCNW
model)

3. Traffic class configuration:

VEF3 64 3000000001000 . Class identifier

EXT FLOWS « Minimum and maximum message size, measured in Kbytes.
CLASSES 2 TIME 2000000 POISSON The message size distribution is a uniform distribution
0 MAX 100 MIN 10 PERC 45.5 between this two bounds.
1 MIN 1000 MAX 10000 . overwrites the default destination
distribution
. This percentage and the

maximum time determines the message generation, that
follows an exponential distribution.

The VEF Traces Framework Tutorial, 28 September 2021. 44

VEF Traces Framework Tutorial

Francisco J. Andujar
Universidad de Valladolid

Jesus Escudero-Sahuquillo, Pedro J. Garcia, Francisco
J. Alfaro, José L. Sanchez and Francisco J. Quiles

Universidad de Castilla-La Mancha

'I'rcsgo Ne tworks

and Architectures

This work has been supported by the 'SiatiisH Mitisteri6 de Cieticia ¢ fnifsva6168, dhder the project PID2019-109001RA-100 45

jesus.escudero@uclm.es

mailto:jesus.escudero@uclm.es

